zbMATH — the first resource for mathematics

Multiplier bootstrap of tail copulas with applications. (English) Zbl 1281.62124
Summary: For the problem of estimating lower tail and upper tail copulas, we propose two bootstrap procedures for approximating the distribution of the corresponding empirical tail copulas. The first method uses a multiplier bootstrap of the empirical tail copula process and requires estimation of the partial derivatives of the tail copulas. The second method avoids this estimation problem and uses multipliers in the two-dimensional empirical distribution function and in the estimates of the marginal distributions. For both multiplier bootstrap procedures, we prove consistency.
For these investigations, we demonstrate that the common assumption of the existence of continuous partial derivatives in the the literature on tail copula estimation is so restrictive, such that the tail copula corresponding to tail independence is the only tail copula with this property. Moreover, we are able to solve this problem and prove weak convergence of the empirical tail copula process under nonrestrictive smoothness assumptions that are satisfied for many commonly used models. These results are applied in several statistical problems, including minimum distance estimation and goodness-of-fit testing.

62G32 Statistics of extreme values; tail inference
62G09 Nonparametric statistical resampling methods
62G10 Nonparametric hypothesis testing
PDF BibTeX Cite
Full Text: DOI arXiv
[1] Bücher, A. (2011). Statistical inference for copulas and extremes. Ph.D. thesis, Ruhr-Univ. Bochum, Germany.
[2] Bücher, A. and Dette, H. (2010). A note on bootstrap approximations for the empirical copula process. Statist. Probab. Lett. 80 1925-1932. · Zbl 1202.62055
[3] Bücher, A. and Volgushev, S. (2011). Empirical and sequential empirical copula processes under serial dependence. Preprint. Available at . 1111.2778 · Zbl 1277.62223
[4] Coles, S.G. and Tawn, J.A. (1994). Statistical methods for multivariate extremes: An application to structural design. J. Appl. Stat. 43 1-48. · Zbl 0825.62717
[5] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory : An Introduction. Springer Series in Operations Research and Financial Engineering . New York: Springer. · Zbl 1101.62002
[6] de Haan, L., Neves, C. and Peng, L. (2008). Parametric tail copula estimation and model testing. J. Multivariate Anal. 99 1260-1275. · Zbl 1141.62011
[7] Drees, H. and Huang, X. (1998). Best attainable rates of convergence for estimators of the stable tail dependence function. J. Multivariate Anal. 64 25-47. · Zbl 0953.62046
[8] Drees, H. and Kaufmann, E. (1998). Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Process. Appl. 75 149-172. · Zbl 0926.62013
[9] Einmahl, J.H.J., de Haan, L. and Huang, X. (1993). Estimating a multidimensional extreme-value distribution. J. Multivariate Anal. 47 35-47. · Zbl 0778.62047
[10] Einmahl, J.H.J., de Haan, L. and Li, D. (2006). Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition. Ann. Statist. 34 1987-2014. · Zbl 1246.60051
[11] Einmahl, J.H.J., Krajina, A. and Segers, J. (2008). A method of moments estimator of tail dependence. Bernoulli 14 1003-1026. · Zbl 1155.62017
[12] Einmahl, J.H.J., Krajina, A. and Segers, J. (2011). An M-estimator for tail dependence in arbitrary dimensions. Discussion Paper 2011-013, CentER. Available at . · Zbl 1257.62058
[13] Embrechts, P., Lindskog, F. and McNeil, A. (2003). Modelling dependence with copulas and applications to risk management. In Handbook of Heavy Tailed Distributions in Finance (S. Rachev, ed.) 329-384. Amsterdam: Elsevier.
[14] Gomes, M.I. and Oliveira, O. (2001). The bootstrap methodology in statistics of extremes - choice of the optimal sample fraction. Extremes 4 331-358 (2002). · Zbl 1023.62048
[15] Huang, X. (1992). Statistics of bivariate extreme values. Ph.D. thesis, Tinbergen Institute Research Series, Netherlands.
[16] Joe, H. (1990). Families of min-stable multivariate exponential and multivariate extreme value distributions. Statist. Probab. Lett. 9 75-81. · Zbl 0686.62035
[17] Kojadinovic, I. and Yan, J. (2011). A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat. Comput. 21 17-30. · Zbl 1274.62400
[18] Kojadinovic, I., Yan, J. and Holmes, M. (2011). Fast large-sample goodness-of-fit tests for copulas. Statist. Sinica 21 841-871. · Zbl 1214.62049
[19] Kosorok, M.R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer Series in Statistics . New York: Springer. · Zbl 1180.62137
[20] Malevergne, Y. and Sornette, D. (2004). How to account for extreme co-movements between individual stocks and the market. J. Risk 6 71-116.
[21] Peng, L. and Qi, Y. (2008). Bootstrap approximation of tail dependence function. J. Multivariate Anal. 99 1807-1824. · Zbl 1284.62301
[22] Qi, Y. (1997). Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics. Acta Math. Appl. Sin. Engl. Ser. 13 167-175. · Zbl 0904.62061
[23] Rémillard, B. and Scaillet, O. (2009). Testing for equality between two copulas. J. Multivariate Anal. 100 377-386. · Zbl 1157.62401
[24] Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence. Scand. J. Stat. 33 307-335. · Zbl 1124.62016
[25] Segers, J. (2011). Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions. Preprint. Available at . 1012.2133
[26] Sklar, M. (1959). Fonctions de répartition à \(n\) dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229-231. · Zbl 0100.14202
[27] Tawn, J.A. (1988). Bivariate extreme value theory: Models and estimation. Biometrika 75 397-415. · Zbl 0653.62045
[28] Tiago de Oliveira, J. (1980). Bivariate extremes: Foundations and statistics. In Multivariate Analysis , V ( Proc. Fifth Internat. Sympos. , Univ. Pittsburgh , Pittsburgh , Pa. , 1978) (P.R. Krishnaiah, ed.) 349-366. Amsterdam: North-Holland. · Zbl 0431.62029
[29] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge: Cambridge Univ. Press. · Zbl 0910.62001
[30] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes : With Applications to Statistics. Springer Series in Statistics . New York: Springer. · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.