zbMATH — the first resource for mathematics

Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition. (English) Zbl 1281.62098
Summary: We consider statistical inference for a partially linear varying coefficient model with measurement errors in the nonparametric part when some prior information about the parametric part is available. The prior information is expressed in the form of exact linear restrictions. Two types of local bias-corrected restricted profile least squares estimators of the parametric component and nonparametric component are conducted, and their asymptotic properties are also studied under some regularity conditions. Moreover, we compare the efficiency of the two kinds of parameter estimators under the criterion of Löwner ordering. Finally, we develop a linear hypothesis test for the parametric component. Some simulation studies are conducted to examine the finite sample performance for the proposed method. A real data set is analyzed for illustration.

62G08 Nonparametric regression and quantile regression
62F10 Point estimation
62F30 Parametric inference under constraints
60E15 Inequalities; stochastic orderings
62J05 Linear regression; mixed models
65C60 Computational problems in statistics (MSC2010)
PDF BibTeX Cite
Full Text: DOI
[1] Ahmad, I., Leelahanon, S., Li, Q. (2005). Efficient estimation of a semiparametric partially linear varying coefficient model. The Annals of Statistics, 33, 258-283. · Zbl 1064.62043
[2] Carroll, R. J., Ruppert, D., Stefanski, L. A. (1995). Measurement Error in Non- linear Models. London: Chapman & Hall/CRC. · Zbl 0853.62048
[3] Fan, J. Q., Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 11, 1031-1057. · Zbl 1098.62077
[4] Fuller, W. A. (1987). Measurement Error Models. New York: Wiley. · Zbl 0800.62413
[5] Harrison, D., Rubinfeld, D. L. (1978). Hedonic housing pries and the demand for clean air. Journal of Environmental Economics and Management, \(5\), 81-102. · Zbl 0375.90023
[6] Hu, X. M., Wang, Z. Z., Zhao, Z. Z. (2009). Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models. Statistics and Probability Letters, 79, 1044-1052. · Zbl 1158.62030
[7] Kai, B., Li, R. Z., Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. The Annals of Statistics, 39, 305-332. · Zbl 1209.62074
[8] Li, G. R., Feng, S. Y., Peng, H. (2011). Profile-type smoothed score function for a varying coefficient partially linear model. Journal of Multivariate Analysis, 102, 372-385. · Zbl 1327.62263
[9] Li, G. R., Lin, L., Zhu, L. X. (2012). Empirical likelihood for varying coefficient partially linear model with diverging number of parameters. Journal of Multivariate Analysis, 105, 85-111. · Zbl 1236.62020
[10] Liang, H., Härdle, W., Carroll, R. J. (1999). Estimation in a semi-parametric partially linear errors-in-variables models. The Annals of Statistics, 27, 1519-1533.
[11] Lin, X. H., Carroll, R. J. (2000). Nonparametric function estimation for clustered data when the predictor is measured without/with error. Journal of the American Statistical Association, 95, 520-534. · Zbl 0995.62043
[12] Wang, X. L., Li, G. R., Lin, L. (2011). Empirical likelihood inference for semiparametric varying-coefficient partially linear EV models. Metrika, 73, 171-185. · Zbl 1206.62080
[13] Wei, C. H. (2012). Statistical inference for restricted partially linear varying coefficient errors-in-variables models. Journal of Statistical Planning and Inference, 142, 2464-2472. · Zbl 1244.62062
[14] Wei, C. H., Wu, X. Z. (2008). Profile Lagrange multiplier test for partially linear varying-coefficient regression models. Journal of System Science and Mathematical Science, 28, 416-424. · Zbl 1174.62390
[15] Xia, Y. C., Li, W. K. (1999). On the estimation and testing of functional coefficient linear models. Statistica Sinica, \(9\), 737-757. · Zbl 0958.62040
[16] Xia, Y. C., Zhang, W. Y., Tong, H. (2004). Efficient estimation for semivarying-coefficient models. Biometrika, 91, 661-681. · Zbl 1108.62019
[17] You, J. H., Chen, G. M. (2006). Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model. Journal of Multivariate Analysis, 97, 324-341. · Zbl 1085.62043
[18] You, J. H., Zhou, Y. (2006). Empirical likelihood for semi-parametric varying-coefficient partially linear model. Statistics and Probability Letters, 76, 412-422. · Zbl 1086.62057
[19] You, J. H., Zhou, Y., Chen, G. M. (2006). Corrected local polynomial estimation in varying coefficient models with measurement errors. The Canadian Journal of Statistics, 34, 391-410. · Zbl 1104.62064
[20] Zhang, W. W., Li, G. R., Xue, L. G. (2011). Profile inference on partially linear varying-coefficient errors-in-variables models under restricted condition. Computational Statistics and Data Analysis, 55, 3027-3040. · Zbl 1218.62038
[21] Zhang, W. Y., Lee, S., Song, X. Y. (2002). Local polynomial fitting in semivarying coefficient models. Journal of Multivariate Analysis, 82, 166-188. · Zbl 0995.62038
[22] Zhou, Y., Liang, H. (2009). Statistical inference for semiparametric varying-coefficient partially linear models with generated regressors. The Annals of Statistics, 37, 427-458. · Zbl 1156.62036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.