zbMATH — the first resource for mathematics

Collocation methods for nonlinear convolution Volterra integral equations with multiple proportional delays. (English) Zbl 1280.65148
Summary: We apply the collocation methods to a class of nonlinear convolution Volterra integral equations with multiple proportional delays. We present the existence, uniqueness and regularity properties of the analytic solution for this type of equations, and then analyze the convergence and superconvergence properties of the collocation solution. The numerical results verify our theoretical analysis.

65R20 Numerical methods for integral equations
45D05 Volterra integral equations
45G10 Other nonlinear integral equations
Full Text: DOI
[1] Ali, I.; Brunner, H.; Tang, T., Spectral methods for pantograph-type differential and integral equations with multiple delays, Front. math. China, 4, 49-61, (2009) · Zbl 1396.65107
[2] Berg, L.; Wolfersdorf, L.V., On a class of generalized autoconvolution equations of the third kind, Z. anal. anwend., 24, 217-250, (2005) · Zbl 1104.45001
[3] Brunner, H., Collocation methods for Volterra integral and related functional differential equations, (2004), Cambridge University Press Cambridge · Zbl 1059.65122
[4] Brunner, H., Collocation methods for pantograph-type Volterra functional equations with multiple delays, Comput. methods appl. math., 8, 207-222, (2008) · Zbl 1153.65123
[5] Brunner, H.; Hu, Q.Y., Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays, SIAM J. numer. anal., 43, 1934-1949, (2005) · Zbl 1103.65136
[6] Capobianco, G.; Conte, D.; Prete, I.D.; Russo, E., Fast runge – kutta methods for nonlinear convolution systems of Volterra integral equations, Bit, 47, 259-275, (2007) · Zbl 1116.65128
[7] Chen, Y.P.; Tang, T., Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. comp., 79, 147-167, (2010) · Zbl 1207.65157
[8] Cuminato, J.A., On the uniform convergence of a collocation method for a class of singular integral equations, Bit, 27, 190-202, (1987) · Zbl 0629.65139
[9] Eggermont, P.P.B.; Lubich, C., Fast numerical solution of singular integral equations, J. integral equat. appl., 6, 335-351, (1994) · Zbl 0819.65140
[10] Germund, D.; Ake, B., Numerical methods in scientific computing, (2008), Society for Industrial & Applied Mathematics United States · Zbl 1153.65001
[11] Q.G. Guan, Y.K. Zou, R. Zhang, Analysis of collocation solutions for nonstandard Volterra integral equations. IMA Numer. Anal., http://dx.doi.org/10.1093/imanum/drr038. · Zbl 1259.65214
[12] Hoppensteadt, F.C.; Jackiewicz, Z.; Zubik, K.B., Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels, Bit, 47, 325-350, (2007) · Zbl 1120.65135
[13] Janno, J., Nonlinear equations with operators satisfying generalized Lipschitz conditions in scales, J. anal. appl., 18, 287-295, (1999) · Zbl 0937.47061
[14] Liu, M.Z.; Li, D., Properties of analytic solution and numerical solution and multi-pantograph equation, Appl. math. comput., 155, 853-871, (2004) · Zbl 1059.65060
[15] Ma, J.T.; Brunner, H., A posteriori error estimates of discontinuous Galerkin methods for non-standard Volterra integro-differential equations, IMA numer. anal., 26, 78-95, (2006) · Zbl 1094.65135
[16] Ma, J.T.; Xiang, K.L.; Jiang, Y.J., An integral equation method with high-order collocation implementations for pricing American put options intern, J. econ. fin., 2, 102-112, (2010)
[17] Iserles, A., On the generalized pantograph functional differential equation, Eur. J. appl. math., 4, 1-38, (1993) · Zbl 0767.34054
[18] Wolfersdorf, L.V., Autoconvolution equations of the third kind with Abel integral, J. integral equat. appl., 23, 113-136, (2011) · Zbl 1219.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.