zbMATH — the first resource for mathematics

A simple periodic-forced model for dengue fitted to incidence data in Singapore. (English) Zbl 1279.92048
Summary: Dengue is the world’s major arbovirosis and therefore an important public health concern in endemic areas. The availability of weekly reports of dengue cases in Singapore offers the opportunity to analyze the transmission dynamics and the impact of vector control strategies. Based on a previous model studying the impact of vector control strategies in Singapore during the 2005 outbreak, a simple vector-host model accounting for seasonal fluctuation in vector density was developed to estimate the parameters governing the vector population dynamics using dengue fever incidence data from August 2003 to December 2007. The impact of vector control, which consisted principally of a systematic removal of actual and potential breeding sites during a six-week period in 2005, was also investigated. Although our approach does not account for the complex life cycle of the vector, the good fit between data and model outputs showed that the impact of seasonality on the transmission dynamics is highly important. Moreover, the periodic fluctuations of the vector population were found in phase with temperature variations, suggesting a strong climate effects on the vector density and, in turn, on the transmission dynamics.

92C60 Medical epidemiology
92D30 Epidemiology
Full Text: DOI
[1] Halstead, S. B., Dengue, The Lancet, 370, 1644, (2007)
[2] Kautner, I.; Robinson, M. J.; Kuhnle, U., Dengue virus infection: epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention, J. Pediat., 131, 516, (1997)
[3] Deen, J. L.; Harris, E.; Wills, B.; Balmaseda, A.; Hammond, S. N.; Rocha, C.; Dung, N. M.; Hung, N. T.; Hien, T. T.; Farrar, J. J., The WHO dengue classification and case definitions: time for a reassessment, Lancet, 368, 170, (2006)
[4] Gubler, D. J., Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol., 10, 100, (2002)
[5] Gubler, D. J., Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev., 11, 480, (1998)
[6] Rigau-Pérez, J. G.; Clark, G. G.; Gubler, D. J.; Reiter, P.; Sanders, E. J.; Vance Vorndam, A., Dengue and dengue haemorrhagic fever, The Lancet, 352, 971, (1998)
[7] Kyle, J. L.; Harris, E., Global spread and persistence of dengue, Annu. Rev. Microbiol., 62, 71, (2008)
[8] Ooi, E. E.; Goh, K. T.; Gubler, D. J., Dengue prevention and 35years of vector control in Singapore, Emerg. Infect. Dis., 12, 887, (2006)
[9] Andraud, M.; Hens, N.; Marais, C.; Beutels, P., Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PLoS ONE, 7, e49085, (2012)
[10] Bailey, N. T.J., The mathematical theory of infectious diseases and its applications, (1975), Griffin London · Zbl 0334.92024
[11] Pongsumpun, P.; Tang, I. M., Transmission of dengue hemorrhagic fever in an age structured population, Math. Comput. Model., 37, 949, (2003) · Zbl 1045.92040
[12] Supriatna, A. K.; Soewono, E.; van Gils, S. A., A two-age-classes dengue transmission model, Math. Biosci., 216, 114, (2008) · Zbl 1151.92019
[13] Adams, B.; Boots, M., How important is vertical transmission in mosquitoes for the persistence of dengue? insights from a mathematical model, Epidemics, 2, 1, (2010)
[14] Burattini, M. N.; Chen, M.; Chow, A.; Coutinho, F. A.B.; Goh, K. T.; Lopez, L. F.; Ma, S.; Massad, E., Modelling the control strategies against dengue in Singapore, Epidemiol. Infect., 136, 309, (2008)
[15] Erickson, R. A.; Presley, S. M.; Allen, L. J.S.; Long, K. R.; Cox, S. B., A dengue model with a dynamic aedes albopictus vector population, Ecol. Model., 221, 2899, (2010)
[16] Yang, H. M.; Ferreira, C. P., Assessing the effects of vector control on dengue transmission, Appl. Math. Comput., 198, 401, (2008) · Zbl 1133.92015
[17] Bartley, L. M.; Donnelly, C. A.; Garnett, G. P., The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms, Trans. R. Soc. Trop. Med. Hyg., 96, 387, (2002)
[18] E. Chikaki, H. Ishikawa, A dengue transmission model in Thailand considering sequential infections with all four serotypes, J. Infect. Dev. Ctries 2009.
[19] Derouich, M.; Boutayeb, A., Dengue fever: mathematical modelling and computer simulation, Appl. Math. Comput., 177, 528, (2006) · Zbl 1121.92056
[20] Wearing, H. J.; Rohani, P., Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci. USA., 103, 11802, (2006)
[21] Ferguson, N.; Anderson, R.; Gupta, S., The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens, Proc. Natl. Acad. Sci. USA, 96, 790, (1999)
[22] Bianco, S.; Shaw, L. B., Asymmetry in the presence of migration stabilizes multistrain disease outbreaks, Bull. Math. Biol., 73, 248, (2011) · Zbl 1209.92034
[23] Billings, L.; Schwartz, I. B.; Shaw, L. B.; McCrary, M.; Burke, D. S.; Cummings, D. A.T., Instabilities in multiserotype disease models with antibody-dependent enhancement, J. Theor. Biol., 246, 18, (2007)
[24] Cummings, D. A.T.; Schwartz, I. B.; Billings, L.; Shaw, L. B.; Burke, D. S., Dynamic effects of antibody-dependent enhancement on the fitness of viruses, Proc. Natl. Acad. Sci. USA, 102, 15259, (2005)
[25] Recker, M.; Blyuss, K. B.; Simmons, C. P.; Hien, T. T.; Wills, B.; Farrar, J.; Gupta, S., Immunological serotype interactions and their effect on the epidemiological pattern of dengue, Proc. R. Soc. B, 276, 2541, (2009)
[26] Aguiar, S. Ballesteros, N. Stollenwerk, Two strain dengue model with temporary cross immunity and seasonality, In: AIP Conference Proceedings, vol. 1281, 2010, pp. 732-735.
[27] E. Massad, F.A.B. Coutinho, S. Ma, M.N. Burattini, FOR DEBATE A hypothesis for the 2007 dengue outbreak in Singapore, Epidemiol. Infect. 138 (2010) 951-957.
[28] E.E. Ooi, A. Wilder-Smith, L.C. Ng, D.J. Gubler, The 2007 dengue outbreak in Singapore, Epidemiol. Infect. 138 (2010) 958-9; author reply 959-61.
[29] Wilder-Smith, A.; Earnest, A.; Tan, S. B.; Ooi, E. E.; Gubler, D. J., Lack of association of dengue activity with haze, Epidemiol. Infect., 138, 962, (2010)
[30] Newton, E. A.C.; Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, Am. J. Trop. Med. Hyg., 47, 709, (1992)
[31] Fouque, F.; Carinci, R.; Gaborit, P.; Issaly, J.; Bicout, D. J.; Sabatier, P., Aedes aegypti survival and dengue transmission patterns in French guiana, J. Vector Ecol., 31, 390, (2006)
[32] Monath, T. P., Dengue: the risk to developed and developing countries, Proc. Natl. Acad. Sci. USA, 91, 2395, (1994)
[33] Scott, T. W.; Amerasinghe, P. H.; Morrison, A. C.; Lorenz, L. H.; Clark, G. G.; Strickman, D.; Kittayapong, P.; Edman, J. D., Longitudinal studies of aedes aegypti (diptera: culicidae) in Thailand and puerto rico: blood feeding frequency, J. Med. Entomol., 37, 89, (2000)
[34] Scott, T. W.; Takken, W., Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission, Trends Parasitol., 28, 114, (2012)
[35] B.K. Koh, L.C. Ng, Y. Kita, C.S. Tang, L.W. Ang, K.Y. Wong, L. James, K.T. Goh, The 2005 dengue epidemic in Singapore: epidemiology, prevention and control. Ann. Acad. Med. Singapore 37 (2008) 538-545.
[36] Lee, K. S.; Lai, Y. L.; Lo, S.; Barkham, T.; Aw, P.; Ooi, P. L.; Tai, J. C.; Hibberd, M.; Johansson, P.; Khoo, S. P.; Ng, L. C., Dengue virus surveillance for early warning, Singapore Emerg. Infect. Dis., 16, 847, (2010)
[37] T.S. Ler, L.W. Ang, G.S.L. Yap, L.C. Ng, J.C. Tai, L. James, K.T. Gohe, Epidemiological characteristics of the 2005 and 2007 dengue epidemics in Singapore - similarities and distinctions, Western Pacific Surveil. Resp. J. 2 (2011) 1-6.
[38] Massad, E.; Ma, S.; Burattini, M. N.; Tun, Y.; Coutinho, F. A.B.; Ang, L. W., The risk of chikungunya fever in a dengue-endemic area, J. Travel Med., 15, 147, (2008)
[39] Ooi, E. E.; Hart, T. J.; Tan, H. C.; Chan, S. H., Dengue seroepidemiology in Singapore, The Lancet, 357, 685, (2001)
[40] Wilder-Smith, A.; Foo, W.; Earnest, A.; Sremulanathan, S.; Paton, N. I., Seroepidemiology of dengue in the adult population of Singapore, Trop. Med. Int. Health, 9, 305, (2004)
[41] Wilder-Smith, A.; Yoksan, S.; Earnest, A.; Subramaniam, R.; Paton, N. I., Serological evidence for the co-circulation of multiple dengue virus serotypes in Singapore, Epidemiol. Infect., 133, 667, (2005)
[42] M.O. Health, Weekly bulletin of infectious diseases Republic of Singapore. MOH weekly publication of statistics on local infectious disease situation, 2003. http://www.moh.gov.sg/content/dam/moh_web/Statistics/Infectious_Diseases_Bulletin/2003/August/2003_week_29.pdf Accessed on.
[43] N. Hens, Z. Shkedy, M. Aerts, C. Faes, P. Van Damme, P. Beutels, Modeling Infectious Disease Parameters Based on Serological and Social Contact Data, Springer, New York, 2012. · Zbl 1284.92004
[44] Bacaer, N., Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69, 1067, (2007) · Zbl 1298.92093
[45] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley, Chichester, UK, 2000. · Zbl 0997.92505
[46] Rebelo, C.; Margheri, A.; Bacaer, N., Persistence in seasonally forced epidemiological models, J. Math. Biol., 64, 933, (2012) · Zbl 1303.92122
[47] Y.L. Hii, J. Rocklov, N. Ng, C.S. Tang, F.Y. Pang, R. Sauerborn, Climate variability and increase in intensity and magnitude of dengue incidence in Singapore, Glob. Health Action 2 (2009).
[48] Hii, Y. L.; Zhu, H.; Ng, N.; Ng, L. C.; Rocklöv, J., Forecast of dengue incidence using temperature and rainfall, PLoS Negl. Trop. Dis., 6, e1908, (2012)
[49] Aguiar, M.; Ballesteros, S.; Kooi, B. W.; Stollenwerk, N., The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis, J. Theor. Biol., 289, 181, (2011) · Zbl 1397.92613
[50] Nagao, Y.; Koelle, K., Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever, Proc. Natl. Acad. Sci. USA, 105, 2238, (2008)
[51] T.B. Tan, Control of dengue fever/dengue haemorrhagic fever in Singapore, Dengue Bull. 21 (1997).
[52] National Environment Agency, Homes found breeding dengue mosquitoes on the rise News Releases 17 (2007). http://app2.nea.gov.sg/news_detail_2007.aspx?news_sid=20081013375614696732 Accessed on 25/01/2012.
[53] National Environment Agency, NEA and MOH urges all to stamp out the Aedes Mosquito population to moderate increase in Dengue cases. News Releases, 2007. <http://app2.nea.gov.sg/news_detail_2007.aspx?news_sid=20081013734271501235> Accessed on 31 May 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.