×

zbMATH — the first resource for mathematics

Accelerating average consensus by using the information of second-order neighbours with communication delays. (English) Zbl 1278.93012
Summary: This article investigates the problem of accelerating average consensus in undirected and connected networks. The protocol using the information of second-order neighbors with communication delays is proposed and the delay effects on stability and the convergence speed are analyzed, respectively, under an assumption about the network topologies. It is proved that, for appropriate communication delays, networks reach average consensus faster under the proposed protocol than the standard protocol using only the information of first-order neighbors. Finally, a simulation example is presented to illustrate the proposed results.

MSC:
93A14 Decentralized systems
68T42 Agent technology and artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TRA.2002.805653
[2] DOI: 10.1007/s10846-009-9337-7 · Zbl 1203.68291
[3] DOI: 10.1109/TAC.2004.834433 · Zbl 1365.90056
[4] DOI: 10.1007/978-1-4612-9892-2
[5] DOI: 10.1016/j.physa.2006.08.015
[6] Jin, Z and Murray, RM. 2006. Multi-hop Relay Protocols for Fast Consensus Seeking. Proceedings of the 45th IEEE Conference on Decision and Control. 2006. pp.1001–1006. San Diego, CA, USA
[7] DOI: 10.1049/iet-cta.2008.0531
[8] DOI: 10.1016/j.physa.2007.08.040
[9] DOI: 10.1109/TAC.2010.2064590 · Zbl 1368.65067
[10] DOI: 10.1080/00207720902755762 · Zbl 1291.93013
[11] Mohar B, Graph Theory, Combinatorics, and Applications 2 pp 871– (1991)
[12] DOI: 10.1016/j.sysconle.2010.01.006 · Zbl 1223.93006
[13] Olfati-Saber, R. 2005. Ultrafast Consensus in Small-world Networks. Proceedings of the 2005 American Control Conference. 2005. pp.2371–2378. Portland, OR
[14] DOI: 10.1109/TAC.2005.864190 · Zbl 1366.93391
[15] DOI: 10.1109/TAC.2004.834113 · Zbl 1365.93301
[16] DOI: 10.1016/j.sysconle.2010.06.016 · Zbl 1213.37131
[17] DOI: 10.1016/j.sysconle.2007.08.009 · Zbl 1133.68412
[18] DOI: 10.1016/j.sysconle.2004.02.022 · Zbl 1157.90347
[19] DOI: 10.1080/00207720902974603 · Zbl 1175.93166
[20] DOI: 10.1016/j.automatica.2010.03.006 · Zbl 1192.93019
[21] DOI: 10.1016/j.physleta.2010.03.053 · Zbl 1237.91184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.