×

zbMATH — the first resource for mathematics

Integer-valued Lévy processes and low latency financial econometrics. (English) Zbl 1278.91156
Summary: Motivated by features of low latency data in financial econometrics we study in detail integer-valued Lévy processes as the basis of price processes for high-frequency econometrics. We propose using models built out of the difference of two subordinators. We apply these models in practice to low latency data for a variety of different types of futures contracts.

MSC:
91G20 Derivative securities (option pricing, hedging, etc.)
91B60 Trade models
91G70 Statistical methods; risk measures
91G80 Financial applications of other theories
60G51 Processes with independent increments; Lévy processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdulhamid AA, Bull. Malays. Math. Sci. Soc. 2 pp 17– (2010)
[2] Abramowitz M, Handbook of Mathematical Functions (1970)
[3] DOI: 10.1198/016214501750332965 · Zbl 1015.62107 · doi:10.1198/016214501750332965
[4] DOI: 10.1080/14697680701381228 · Zbl 1152.91024 · doi:10.1080/14697680701381228
[5] Bacry, E. Delattre, M.H.S. and Muzy, J.F., Modelling microstructure noise with mutually exciting point processes. Unpublished paper, 2011 · Zbl 1280.91073
[6] DOI: 10.3982/ECTA6495 · Zbl 1153.91416 · doi:10.3982/ECTA6495
[7] Barndorff-Nielsen OE, Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle pp 117– (2009)
[8] DOI: 10.1111/1467-9868.00282 · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[9] Barndorff-Nielsen OE, Theory Probab. Math. Statist. 65 pp 1– (2001)
[10] DOI: 10.1111/1467-9868.00336 · Zbl 1059.62107 · doi:10.1111/1467-9868.00336
[11] DOI: 10.1016/j.jeconom.2005.01.009 · Zbl 1337.62342 · doi:10.1016/j.jeconom.2005.01.009
[12] Barndorff-Nielsen OE, Change of Time and Change of Measure (2010) · Zbl 1234.60003 · doi:10.1142/7928
[13] DOI: 10.1007/978-3-540-71297-8_41 · Zbl 1178.91218 · doi:10.1007/978-3-540-71297-8_41
[14] DOI: 10.1007/978-1-4612-2948-3 · doi:10.1007/978-1-4612-2948-3
[15] Boyle PP, Int. Opt. J. 3 pp 7– (1986)
[16] DOI: 10.1239/aap/1029955251 · Zbl 0957.60055 · doi:10.1239/aap/1029955251
[17] DOI: 10.1086/338705 · doi:10.1086/338705
[18] DOI: 10.1002/fut.2211 · doi:10.1002/fut.2211
[19] Cont R, Financial Modelling with Jump Processes (2004)
[20] DOI: 10.2307/2327580 · doi:10.2307/2327580
[21] Cox DR, The Statistical Analysis of Series of Events (1966)
[22] DOI: 10.1016/0304-405X(79)90015-1 · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[23] Delbaen F, The Mathematics of Arbitrage (2006)
[24] DOI: 10.1145/1596519.1596523 · Zbl 1390.65008 · doi:10.1145/1596519.1596523
[25] DOI: 10.1111/1468-0262.00091 · Zbl 1056.91535 · doi:10.1111/1468-0262.00091
[26] DOI: 10.2307/1911990 · Zbl 0528.62093 · doi:10.2307/1911990
[27] Field, J and Large, J. Pro-rata matching and one-tick markets. Unpublished paper, Oxford-Man Institute, 2008
[28] DOI: 10.2307/2341080 · doi:10.2307/2341080
[29] Hansen, PR and Horel, G. Quadratic variation by Markov chains. Unpublished paper, Department of Economics, Stanford University, 2009
[30] DOI: 10.1198/073500106000000071 · doi:10.1198/073500106000000071
[31] DOI: 10.1111/0022-1082.00183 · doi:10.1111/0022-1082.00183
[32] DOI: 10.1016/0304-405X(92)90038-Y · doi:10.1016/0304-405X(92)90038-Y
[33] DOI: 10.1007/BF02613581 · Zbl 0156.40402 · doi:10.1007/BF02613581
[34] DOI: 10.1093/biomet/73.2.387 · Zbl 0603.62015 · doi:10.1093/biomet/73.2.387
[35] DOI: 10.3905/jod.1996.407949 · doi:10.3905/jod.1996.407949
[36] DOI: 10.1016/j.jspi.2004.08.014 · Zbl 1081.60011 · doi:10.1016/j.jspi.2004.08.014
[37] DOI: 10.2307/2980526 · Zbl 0017.07707 · doi:10.2307/2980526
[38] Jørgensen B, J. R. Statist. Soc. Ser. B 49 pp 127– (1987)
[39] DOI: 10.1111/j.1751-5823.2005.tb00250.x · Zbl 1104.62010 · doi:10.1111/j.1751-5823.2005.tb00250.x
[40] DOI: 10.1137/S0363012903423168 · Zbl 1101.91041 · doi:10.1137/S0363012903423168
[41] DOI: 10.1007/s10463-005-0029-1 · Zbl 1100.62010 · doi:10.1007/s10463-005-0029-1
[42] Lehmann, B. Arbitrage-free limit order books and the pricing of order ow risk. NBER Discussion Paper, 2008
[43] DOI: 10.1016/B978-0-444-53548-1.50007-6 · doi:10.1016/B978-0-444-53548-1.50007-6
[44] Madan DB, Sankhya: Indian J. Statist. Ser. B 46 pp 174– (1984)
[45] Mykland PA, Statistical Methods for Stochastic Differential Equations pp 109– (2012) · Zbl 1375.62023 · doi:10.1201/b12126-3
[46] DOI: 10.3905/jod.1994.407888 · doi:10.3905/jod.1994.407888
[47] Phillips, PCB and Yu, J. Information loss in volatility measurement with at price trading. Unpublished paper, Cowles Foundation for Research in Economics, Yale University, 2008
[48] DOI: 10.1016/S0378-4371(02)01896-4 · Zbl 1072.91561 · doi:10.1016/S0378-4371(02)01896-4
[49] DOI: 10.1086/294980 · doi:10.1086/294980
[50] DOI: 10.1111/j.1467-9965.1996.tb00117.x · Zbl 0915.90028 · doi:10.1111/j.1467-9965.1996.tb00117.x
[51] Renault, E and Werker, B. Stochastic volatility models with transaction time risk. Department of Economics, University of North Carolina, 2009
[52] DOI: 10.3150/08-BEJ170 · Zbl 1200.62132 · doi:10.3150/08-BEJ170
[53] DOI: 10.1007/978-1-4684-6778-9_2 · doi:10.1007/978-1-4684-6778-9_2
[54] DOI: 10.1016/j.spa.2006.10.003 · Zbl 1118.60037 · doi:10.1016/j.spa.2006.10.003
[55] DOI: 10.1198/073500104000000541 · doi:10.1198/073500104000000541
[56] DOI: 10.1016/B978-0-444-50897-3.50010-9 · doi:10.1016/B978-0-444-50897-3.50010-9
[57] DOI: 10.1093/jjfinec/nbg002 · doi:10.1093/jjfinec/nbg002
[58] Sato K, Lévy Processes and Infinitely Divisible Distributions (1999) · Zbl 0973.60001
[59] Steutel FW, Infinitely Divisibility of Probability Distributions on the Real Line (2004)
[60] Tweedie, M. An index which distinguishes between some important exponential families. InStatistics: Applications and New Directions: Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, edited by J. Ghosh, J. Roy, pp. 579–604, 1984
[61] DOI: 10.1080/14697680500244411 · Zbl 1134.91379 · doi:10.1080/14697680500244411
[62] DOI: 10.1016/j.cam.2009.09.019 · Zbl 1181.91315 · doi:10.1016/j.cam.2009.09.019
[63] DOI: 10.1111/1467-9965.t01-1-00022 · Zbl 1130.91346 · doi:10.1111/1467-9965.t01-1-00022
[64] DOI: 10.1016/j.spl.2009.04.011 · Zbl 1166.62009 · doi:10.1016/j.spl.2009.04.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.