×

zbMATH — the first resource for mathematics

Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation. (English) Zbl 1277.65073
Summary: Four alternating direction implicit (ADI) schemes are presented for solving two-dimensional cubic nonlinear Schrödinger equations. Firstly, we give a Crank-Nicolson ADI scheme and a linearized ADI scheme both with accuracy \(O(\Delta t^2+h^2)\), with the same method, use fourth-order Padé compact difference approximation for the spatial discretization; two HOC-ADI schemes with accuracy \(O(\Delta t^2+h^4)\) are given. The two linearized ADI schemes apply extrapolation technique to the real coefficient of the nonlinear term to avoid iterating to solve. Unconditionally stable character is verified by linear Fourier analysis. The solution procedure consists of a number of tridiagonal matrix equations which make the computation cost effective. Numerical experiments are conducted to demonstrate the efficiency and accuracy, and linearized ADI schemes show less computational cost. All schemes given in this paper also can be used for two-dimensional linear Schrödinger equations.

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gross, E.P., Structure of a quantized vortex in boson systems, Nuovo cimento, 20, 454, (1961) · Zbl 0100.42403
[2] Anderson, B.P.; Kasevich, M.A., Macroscopic quantum interference from atomic tunnel arrays, Science, 282, 1686, (1998)
[3] Hagley, E.W.; Deng, L.; Kozuma, M.; Wen, J.; Helmerson, K.; Rolston, S.L.; Phillips, W.D., A well-collimated quasi-continuous atom laser, Science, 283, 1706, (1999)
[4] Kozuma, M.; Suzuki, Y.; Torii, T.; Sugiura, Y.; Kuga, T.; Hagley, E.W.; Deng, L., Phase-coherent amplification of matter waves, Science, 286, 2309, (1999)
[5] Chiofalo, M.L.; Tosi, M.P., Output from Bose condensates in tunnel arrays: the role of Mean-field interactions and of transverse confinement, Phys. lett. A, 268, 406, (2000)
[6] Chang, Q.S.; Jia, Erhui; Sun, W., Difference schemes for solving the generalized nonlinear Schrödinger equation, J. comput. phys., 148, 397-415, (1999) · Zbl 0923.65059
[7] Wang, H.Q., Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl. math. comput., 170, 17-35, (2005) · Zbl 1082.65570
[8] Dehghan, M.; Taleei, A., A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. phys. comm., 181, 43-51, (2010) · Zbl 1206.65207
[9] Dehghan, M.; Shokri, A., A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput. math. appl., 54, 136-146, (2007) · Zbl 1126.65092
[10] Mohebbi, A.; Dehghan, M., The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. comput. appl. math., 225, 124-134, (2009) · Zbl 1159.65081
[11] Wang, Z.C.; Shao, H.Z., A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation, Comput. phys. comm., 180, 842-849, (2009) · Zbl 1198.81107
[12] Avdelas, G.; Konguetsof, A.; Simos, T.E., A generalization of numerovʼs method for the numerical solution of the Schrödinger equation in two dimensions, Comput. chem., 24, 577-584, (2000) · Zbl 1046.65092
[13] Vigo-Aguiar, J.; Ramos, H., A variable-step numerov method for the numerical solution of the Schrödinger equation, J. math. chem., 37, 255-262, (2005) · Zbl 1070.81513
[14] Vigo-Aguiar, J.; Simos, T.E., Review of multistep methods for the numerical solution of the radial Schrödinger equation, Int. J. quant. chem., 103, 278-290, (2005)
[15] Karaa, S.; Zhang, J., High order ADI method for solving unsteady convection-diffusion problems, J. comput. phys., 198, 1-9, (2004) · Zbl 1053.65067
[16] You, D., A high-order Padé ADI method for unsteady convection-diffusion equations, J. comput. phys., 214, 1-11, (2006) · Zbl 1089.65092
[17] Jun, Y.; Mai, T.Z., ADI method—domain decomposition, Appl. numer. math., 56, 1092-1107, (2006) · Zbl 1099.65084
[18] Witelski, T.P.; Bowenb, M., ADI schemes for higher-order nonlinear diffusion equations, Appl. numer. math., 45, 331-351, (2003) · Zbl 1061.76051
[19] Qin, J.G., The new alternating direction implicit difference methods for the wave equations, J. comput. appl. math., 230, 213-223, (2009) · Zbl 1166.65044
[20] Qin, J.G., The new alternating direction implicit difference methods for solving three-dimensional parabolic equations, Appl. math. model., 34, 890-897, (2010) · Zbl 1185.65151
[21] intʼ Hout, K.J.; Welfert, B.D.; Mai, T.Z., Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms, Appl. numer. math., 59, 677-692, (2009) · Zbl 1161.65073
[22] Tian, Z.F.; Yu, P.X., High-order compact ADI (HOC-ADI) method for solving unsteady 2D Schrödinger equation, Comput. phys. comm., 181, 861-868, (2010) · Zbl 1205.65240
[23] Li, J.C.; Chen, Y.T.; Liu, G.Q., High-order compact ADI methods for parabolic equations, Comput. math. appl., 52, 1343-1356, (2006) · Zbl 1121.65092
[24] Tian, Z.F.; Ge, Y.B., A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problems, J. comput. appl. math., 198, 268-286, (2007) · Zbl 1104.65086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.