×

Symmetry preserving parameterization schemes. (English) Zbl 1277.58021

Summary: Methods for the design of physical parameterization schemes that possess certain invariance properties are discussed. These methods are based on different techniques of group classification and provide means to determine expressions for unclosed terms arising in the course of averaging of nonlinear differential equations. The demand that the averaged equation is invariant with respect to a subalgebra of the maximal Lie invariance algebra of the unaveraged equation leads to a problem of inverse group classification which is solved by the description of differential invariants of the selected subalgebra. Given no prescribed symmetry group, the direct group classification problem is relevant. Within this framework, the algebraic method or direct integration of determining equations for Lie symmetries can be applied. For cumbersome parameterizations, a preliminary group classification can be carried out. The methods presented are exemplified by parameterizing the eddy vorticity flux in the averaged vorticity equation. In particular, differential invariants of (infinite-dimensional) subalgebras of the maximal Lie invariance algebra of the unaveraged vorticity equation are computed. A hierarchy of normalized subclasses of generalized vorticity equations is constructed. Invariant parameterizations possessing minimal symmetry extensions are described and a restricted class of invariant parameterization is exhaustively classified. The physical importance of the parameterizations designed is discussed.{
©2012 American Institute of Physics}

MSC:

58J70 Invariance and symmetry properties for PDEs on manifolds
20G45 Applications of linear algebraic groups to the sciences
22E70 Applications of Lie groups to the sciences; explicit representations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF01097533 · Zbl 0760.35002 · doi:10.1007/BF01097533
[2] DOI: 10.1007/978-94-017-0745-9 · doi:10.1007/978-94-017-0745-9
[3] DOI: 10.1023/A:1012667617936 · Zbl 1054.35002 · doi:10.1023/A:1012667617936
[4] DOI: 10.1063/1.3269919 · Zbl 1272.86001 · doi:10.1063/1.3269919
[5] DOI: 10.1063/1.3567175 · Zbl 1315.86001 · doi:10.1063/1.3567175
[6] DOI: 10.1093/qjmam/hbi033 · Zbl 1088.76059 · doi:10.1093/qjmam/hbi033
[7] DOI: 10.1007/978-1-4757-4307-4 · doi:10.1007/978-1-4757-4307-4
[8] DOI: 10.1007/s10208-005-0206-x · Zbl 1183.58016 · doi:10.1007/s10208-005-0206-x
[9] DOI: 10.1016/j.cnsns.2011.01.011 · Zbl 1222.35012 · doi:10.1016/j.cnsns.2011.01.011
[10] Emanuel K. A., Atmospheric Convection (1994)
[11] DOI: 10.1023/A:1005878210297 · Zbl 0937.53012 · doi:10.1023/A:1005878210297
[12] DOI: 10.2991/jnmp.1994.1.1.6 · Zbl 0956.35099 · doi:10.2991/jnmp.1994.1.1.6
[13] DOI: 10.1016/S1007-5704(03)00013-3 · Zbl 1036.58033 · doi:10.1016/S1007-5704(03)00013-3
[14] Ibragimov N. H., CRC Handbook of Lie Group Analysis of Differential Equations (1995) · Zbl 0864.35002
[15] DOI: 10.1063/1.529841 · Zbl 0761.35104 · doi:10.1063/1.529841
[16] DOI: 10.1063/1.529042 · Zbl 0737.35099 · doi:10.1063/1.529042
[17] DOI: 10.1134/S1995080210020034 · Zbl 1257.35018 · doi:10.1134/S1995080210020034
[18] DOI: 10.1017/CBO9780511802270 · doi:10.1017/CBO9780511802270
[19] DOI: 10.1002/hyp.5967 · doi:10.1002/hyp.5967
[20] DOI: 10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2 · doi:10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2
[21] DOI: 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2 · doi:10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
[22] DOI: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 · doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
[23] DOI: 10.1007/s10440-006-9039-0 · Zbl 1113.35132 · doi:10.1007/s10440-006-9039-0
[24] Lisle, I. G. ”Equivalence transformations for classes of differential equations,” Ph.D. dissertation (University of British Columbia, 1992).
[25] DOI: 10.1090/S0002-9947-1984-0719663-1 · doi:10.1090/S0002-9947-1984-0719663-1
[26] DOI: 10.1016/j.ocemod.2010.02.001 · doi:10.1016/j.ocemod.2010.02.001
[27] DOI: 10.1016/0021-8928(94)90138-4 · Zbl 0890.76071 · doi:10.1016/0021-8928(94)90138-4
[28] DOI: 10.1016/0021-8928(94)90138-4 · Zbl 0890.76071 · doi:10.1016/0021-8928(94)90138-4
[29] DOI: 10.2991/jnmp.1996.3.1-2.21 · doi:10.2991/jnmp.1996.3.1-2.21
[30] Mubarakzyanov G. M., Izv. Vyssh. Uchebn. Zaved., Mat. 32 pp 114– (1963)
[31] DOI: 10.1023/A:1013347626895 · Zbl 0993.58020 · doi:10.1023/A:1013347626895
[32] Oberlack M., Annual Research Briefs (1997)
[33] Oberlack M., Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz (2000)
[34] DOI: 10.1017/CBO9780511609565 · doi:10.1017/CBO9780511609565
[35] Olver P. J., Application of Lie Groups to Differential Equations (2000) · Zbl 0937.58026
[36] DOI: 10.1016/j.jmaa.2006.12.029 · Zbl 1124.53006 · doi:10.1016/j.jmaa.2006.12.029
[37] Ovsiannikov L. V., Group Analysis of Differential Equations (1982) · Zbl 0485.58002
[38] DOI: 10.1088/0305-4470/37/30/011 · Zbl 1067.35006 · doi:10.1088/0305-4470/37/30/011
[39] DOI: 10.1007/s10440-008-9321-4 · Zbl 1216.35146 · doi:10.1007/s10440-008-9321-4
[40] DOI: 10.1016/j.cnsns.2010.01.037 · Zbl 1222.35009 · doi:10.1016/j.cnsns.2010.01.037
[41] DOI: 10.3842/SIGMA.2006.052 · Zbl 1092.22014 · doi:10.3842/SIGMA.2006.052
[42] DOI: 10.1016/j.cnsns.2005.02.006 · Zbl 1109.35091 · doi:10.1016/j.cnsns.2005.02.006
[43] DOI: 10.1016/j.euromechflu.2006.10.003 · Zbl 1112.76044 · doi:10.1016/j.euromechflu.2006.10.003
[44] DOI: 10.1175/1520-0469(1985)042<1353:POSSBA>2.0.CO;2 · doi:10.1175/1520-0469(1985)042<1353:POSSBA>2.0.CO;2
[45] DOI: 10.1017/CBO9780511812590 · doi:10.1017/CBO9780511812590
[46] Stull R. B., An Introduction to Boundary Layer Meteorology · Zbl 0752.76001 · doi:10.1007/978-94-009-3027-8
[47] DOI: 10.1063/1.531634 · Zbl 0872.35004 · doi:10.1063/1.531634
[48] DOI: 10.1175/1520-0469(1988)045<0617:EVOTAP>2.0.CO;2 · doi:10.1175/1520-0469(1988)045<0617:EVOTAP>2.0.CO;2
[49] DOI: 10.1007/s10440-008-9280-9 · Zbl 1242.35023 · doi:10.1007/s10440-008-9280-9
[50] DOI: 10.1088/0305-4470/32/42/312 · Zbl 0990.35009 · doi:10.1088/0305-4470/32/42/312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.