×

zbMATH — the first resource for mathematics

Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. (English) Zbl 1277.35305
Summary: This paper is concerned with the fractional fifth-order KdV types of equations, the complete group classification is performed on the general fractional fifth-order partial differential equation (FPDE), which includes a lot of important fifth-order fractional differential equations and nonlinear evolution equations (NLEEs) as its special cases. In particular, all of the point symmetries of the fifth-order nonlinear evolution equation are presented with respect to the arbitrary parameters of the equation. In the sense of point symmetry, all of the vector fields of the equations are obtained. Then, the symmetry reductions are provided, and the exact analytic solutions to the general fifth-order KdV equations are investigated.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35R11 Fractional partial differential equations
35B06 Symmetries, invariants, etc. in context of PDEs
22E70 Applications of Lie groups to the sciences; explicit representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Diethelm, Lect. notes Math (2010)
[2] Miller, An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002
[3] Podlubny, Fractional Differential Equations (1974)
[4] Jafari, Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput 180 pp 488– (2006) · Zbl 1102.65135 · doi:10.1016/j.amc.2005.12.031
[5] Daftardar-Gejji, Solving a multi-order fractional differential equation using Adomian decomposition, Appl. Math. Comput 189 pp 541– (2007) · Zbl 1122.65411 · doi:10.1016/j.amc.2006.11.129
[6] Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A 375 pp 1069– (2011) · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[7] Lu, Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A 376 pp 2045– (2012) · Zbl 1266.35139 · doi:10.1016/j.physleta.2012.05.013
[8] Buckwar, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl 227 pp 81– (1998) · Zbl 0932.58038 · doi:10.1006/jmaa.1998.6078
[9] Djordjevic, Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-de Vries fractional equations, J. Comput. Appl. Math 222 pp 701– (2008) · Zbl 1157.35470 · doi:10.1016/j.cam.2007.12.013
[10] Atanackovic, Variational problems with fractional derivatives: Invariance conditions and Nöther’s theorem, Nonlinear Anal 71 pp 1504– (2009) · Zbl 1163.49022 · doi:10.1016/j.na.2008.12.043
[11] Jumarie, Cauchy’s integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order, Appl. Math. Lett 23 pp 1444– (2010) · Zbl 1202.30068 · doi:10.1016/j.aml.2010.08.001
[12] Sahadevan, Invariance analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl 393 pp 341– (2012) · Zbl 1245.35142 · doi:10.1016/j.jmaa.2012.04.006
[13] Wang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numer. Simulat 18 pp 2321– (2013) · Zbl 1304.35624 · doi:10.1016/j.cnsns.2012.11.032
[14] Yang, The homogeneous balance method, Lax pair, Hirota transformation and a general fifth-order KdV equation, Chaos Solitons Fractals 13 pp 337– (2002) · Zbl 1028.35132 · doi:10.1016/S0960-0779(00)00274-5
[15] Kaya, On a generalized fifth order KdV equations, Phys. Lett. A 310 pp 44– (2003) · Zbl 1011.35114 · doi:10.1016/S0375-9601(03)00215-9
[16] Olver, Applications of Lie Groups to Differential Equations 107 (1993) · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[17] Bluman, Symmetry and Integration Methods for Differential Equations 154 (2002) · Zbl 1013.34004
[18] Liu, Lie symmetry analysis and exact solutions for the extended mKdV equation, Acta Appl. Math 109 pp 1107– (2010) · Zbl 1223.37079 · doi:10.1007/s10440-008-9362-8
[19] Liu, Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J. Math. Anal. Appl 368 pp 551– (2010) · Zbl 1192.35011 · doi:10.1016/j.jmaa.2010.03.026
[20] Liu, Group classifications, optimal systems and exact solutions to the generalized Thomas equations, J. Math. Anal. Appl 383 pp 400– (2011) · Zbl 1246.35196 · doi:10.1016/j.jmaa.2011.05.034
[21] Liu, Complete group classification and exact solutions to the generalized short pulse equation, Stud. Appl. Math 129 pp 103– (2012) · Zbl 1257.35019 · doi:10.1111/j.1467-9590.2012.00548.x
[22] Liu, Symmetry and conservation law classification and exact solutions to the generalized KdV types of equations, Int. J. Bifur. Chaos 22 pp 1250188-1– (2012) · Zbl 1258.35177 · doi:10.1142/S021812741250188X
[23] Liu, Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid, J. Diff. Equ 254 pp 2289– (2013) · Zbl 1266.37041 · doi:10.1016/j.jde.2012.12.004
[24] Liu, The recursion operator method for generalized symmetries and Bäcklund transformations of the Burgers’ equations, J. Appl. Math. Comput · Zbl 1348.37111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.