zbMATH — the first resource for mathematics

A hybrid model predictive control scheme for containment and distributed sensing in multi-agent systems. (English) Zbl 1276.93003
Summary: This paper proposes a control scheme for distributed sensing using a leader/follower multi-agent architecture. The control objective is to make a group of mobile agents cover and sense a sequence of regions of interest. More specifically, when the leaders reach a new target region, they stop until the followers have performed a sensing task. Furthermore, the followers must be contained inside the convex-hull of the leaders’ positions during the motion. Key features of our method, that combines hybrid control with Model Predictive Control (MPC) techniques, are the possibility to take into account input constraints in order to plan the sensing maneuver and the ability of the followers to detect containment violations by simple computation based on the available information about the leaders’ positions.

93A14 Decentralized systems
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI
[1] Egerstedt, M.; Hu, X., Formation constrained multi-agent control, IEEE Transactions on Robotics and Automation, 17, 947-951, (2001)
[2] B. Young, R. Beard, J. Kelsey, A control scheme for improving multi-vehicle formation maneuvers, in: Proceedings of the 2001 American Control Conference, 2001, pp. 704-709.
[3] Lin, Z.; Francis, B.; Maggiore, M., Necessary and sufficient graphical conditions for formation control of unicycles, IEEE Transactions on Automatic Control, 50, 121-127, (2005) · Zbl 1365.93324
[4] Olfati-Saber, R., Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Transactions on Automatic Control, 51, 401-420, (2006) · Zbl 1366.93391
[5] Balch, T.; Arkin, R., Behavior-based formation control for multirobot teams, IEEE Transactions on Robotics and Automation, 14, 926-939, (1998)
[6] Younis, M.; Akkaya, K., Strategies and techniques for node placement in wireless sensor networks: a survey, Ad Hoc Networks, 6, 621-655, (2008)
[7] Wang, Y.-C.; Hu, C.-C.; Tseng, Y.-C., Efficient placement and dispatch of sensors in a wireless sensor network, IEEE Transactions on Mobile Computing, 7, 262-274, (2008)
[8] Graham, R.; Cortes, J., Asymptotic optimality of multicenter Voronoi configurations for random field estimation, IEEE Transactions on Automatic Control, 54, 153-158, (2009) · Zbl 1367.62277
[9] Tanner, H.; Pappas, G.; Kumar, V., Leader-to-formation stability, IEEE Transactions on Robotics and Automation, 20, 443-455, (2004)
[10] M. Ji, A. Muhammad, M. Egerstedt, Leader-based multi-agent coordination: controllability and optimal control, in: Proceedings of the 2006 American Control Conference, 2006, pp. 1358-1363.
[11] Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A.; Ji, M., Laplacian sheep: a hybrid, stop-go policy for leader-based containment control, (Hespanha, J.; Tiwari, A., Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 3927, (2006), Springer Berlin, Heidelberg), 212-226 · Zbl 1178.68595
[12] M. Ji, M. Egerstedt, G. Ferrari-Trecate, A. Buffa, Hierarchical containment control in heterogeneous mobile networks, in: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, 2006, pp. 2227-2231. · Zbl 1367.93398
[13] Ji, M.; Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A., Containment control in mobile networks, IEEE Transactions on Automatic Control, 53, 1972-1975, (2008) · Zbl 1367.93398
[14] Y. Cao, W. Ren, Containment control with multiple stationary or dynamic leaders under a directed interaction graph, in: Proceedings of the 48th IEEE Decision and Control held jointly with the 28th Chinese Control Conference, 2009, pp. 3014-3019.
[15] Z. Li, W. Ren, X. Liu, L. Xie, Distributed containment control of linear multi-agent systems with multiple leaders and reduced-order controllers, in: 50th IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 771-776.
[16] D. Dimagoronas, M. Egerstedt, K. Kyriakopoulos, A leader-based containment control strategy for multiple unicycles, in: Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 5968-5973.
[17] A. Ryan, M. Zennaro, A. Howell, R. Sengupta, J. Hendrick, An overview of emerging results in cooperative uav control, in: Proceedings of the 43rd IEEE Conference on Decision and Control, 2004, pp. 602-607.
[18] M. Kloetzer, C. Belta, Hierarchical abstractions for robotic swarms, in: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006, pp. 952-957.
[19] Meng, Z.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 2092-2099, (2010) · Zbl 1205.93010
[20] Ferrari-Trecate, G.; Galbusera, L.; Marciandi, M. P.E.; Scattolini, R., Model predictive control schemes for consensus in multi-agent systems with single- and double-integrator dynamics, IEEE Transactions on Automatic Control, 54, 2560-2572, (2009) · Zbl 1367.93394
[21] Dunbar, W. B.; Murray, R. M., Distributed receding horizon control for multi-vehicle formation stabilization, Automatica, 42, 549-558, (2006) · Zbl 1103.93031
[22] Zhang, H.-T.; Chen, M. Z.; Zhou, T.; Stan, G.-B., Ultrafast consensus via predictive mechanisms, EPL (Europhysics Letters), 83, 40003, (2008)
[23] Zhang, H.-T.; Chen, M.; Stan, G.-B.; Zhou, T.; Maciejowski, J., Collective behavior coordination with predictive mechanisms, IEEE Circuits and Systems Magazine, 8, 67-85, (2008)
[24] Moreau, L., Stability of multi-agent systems with time-dependent communication links, IEEE Transactions on Automatic Control, 50, 169-182, (2005) · Zbl 1365.93268
[25] Pavlidis, T., Polygonal approximations by newton’s method, IEEE Transactions on Computers, C-26, 800-807, (1977) · Zbl 0362.65010
[26] Aggarwal, A.; Chang, J.-S.; Yap, C.-K., Minimum area circumscribing polygons, The Visual Computer, 1, 112-117, (1985) · Zbl 0617.68040
[27] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., Introduction to algorithms, (2001), The MIT Press New York · Zbl 1047.68161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.