zbMATH — the first resource for mathematics

Quasistatic evolution of sessile drops and contact angle hysteresis. (English) Zbl 1276.76016
Authors’ abstract: “We consider the classical model of capillarity coupled with a rate-independent dissipation mechanism due to frictional forces acting on the contact line, and prove the existence of solutions with prescribed initial configurations for the corresponding quasistatic evolution. We also discuss in detail some explicit solutions to show that the model does account for contact angle hysteresis, and to compare its predictions with experimental observations.”
The model is based on a Young formula, see formula (2.5) and on related formulas, see formulas (2.19). Concerning these formulas the following papers are of interest [R. Finn, Phys. Fluids 22, No. 1, Paper No. 017103, 10 p. (2010; Zbl 1183.76202); R. Finn, J. McCuan and H. C. Wente, J. Math. Fluid Mech. 14, No. 3, 445–453 (2012; Zbl 1306.76011)].

76B45 Capillarity (surface tension) for incompressible inviscid fluids
76T99 Multiphase and multicomponent flows
49K20 Optimality conditions for problems involving partial differential equations
Full Text: DOI
[1] Alberti, G.: Variational models for phase transitions. An approach via Γ-convergence. In: Differential Equations and Calculus of Variations. Topics on Geometrical Evolution Problems and Degree Theory (Pisa 1996) (Eds. Buttazzo G. et al.) Springer-Verlag, Berlin, 95-114, 2000
[2] Alberti, G.; Bouchitté, G.; Seppecher, P., Phase transition with the line-tension effect, Arch. Rational. Mech. Anal., 144, 1-46, (1998) · Zbl 0915.76093
[3] Alberti, G.; DeSimone, A., Wetting of rough surfaces: a homogenization approach, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 79-97, (2005) · Zbl 1145.82321
[4] Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford Science Publications, Oxford (1999) · Zbl 0957.49001
[5] Braides A.: Γ-convergence for Beginners. Oxford Lecture Series in Mathematics and its Applications, Vol. 22. Oxford University Press, Oxford (2002) · Zbl 1198.49001
[6] Burago, Yu.D., Zalgaller, V.A.: Geometric Inequalities. Translated from the Russian by A.B. Sosinskiĭ. Grundlehren der Mathematischen Wissenschaften. Springer Series in Soviet Mathematics, Vol. 285. Springer, Berlin, 1988
[7] Caffarelli, L.; Mellet, A., Capillary Drops: contact angle hysteresis and sticking drops, Calc. Var. Partial Differ. Equ., 29, 141-160, (2007) · Zbl 1168.76007
[8] Callies, M.; Quéré, D., On water repellency, Soft Matter, 1, 55-61, (2005)
[9] Dal Maso, G.: An Introduction to Γ-convergence. Progress in Nonlinear Diff. Equat. and their Appl., Vol. 8. Birkhäuser, Boston, 1993 · Zbl 0816.49001
[10] Dal Maso, G.; DeSimone, A.; Mora, M. G., Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180, 237-291, (2006) · Zbl 1093.74007
[11] Dal Maso, G.; DeSimone, A.; Mora, M. G.; Morini, M., A vanishing viscosity approach to quasistatic evolution in plasticity with softening, Arch. Ration. Mech. Anal., 189, 469-544, (2008) · Zbl 1219.35305
[12] Dal Maso, G.; DeSimone, A., Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions, Math. Models Methods Appl. Sci., 19, 1643-1711, (2009) · Zbl 1197.74020
[13] Dal Maso, G.; Toader, R., A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. Anal., 162, 101-135, (2002) · Zbl 1042.74002
[14] Gennes, P.-G., Wetting: statics and dynamics, Rev. Mod. Phys., 57, 827-863, (1985)
[15] de Gennes, P.-G., Brochard-Wyart, F., Quéré, D.: Gouttes, Bulles, Perles et Ondes. Collection Échelles. Editions Belin, Paris, 2005
[16] DeSimone, A., Fedeli, L., Turco A.: A phase field approach to wetting and contact angle hysteresis phenomena. In: IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (Bochum 2008). (Ed. Hackl K.) IUTAM Bookseries, Vol. 21. Springer, New York, 51-63, 2010
[17] DeSimone, A.; Grunewald, N.; Otto, F., A new model of contact angle hysteresis, Netw. Heterog. Media, 2, 211-225, (2007) · Zbl 1125.76011
[18] Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[19] Finn R.: Equilibrium Capillary Surfaces. Grundlehren der Mathematischen Wissenschaften, Vol. 284. Springer, New York (1986) · Zbl 0583.35002
[20] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342, (1998) · Zbl 0966.74060
[21] Gauss, C.F.: Principia Generalia Theoriae Figurae Fluidorum in Statu Aequilibrii. Comment. Soc. Regiae Scient. Gottingensis Rec. 7 (1830). Reprinted in Werke. Vol. V, pp. 29-77. Königliche Gesellschaft der Wissenschaften, Göttingen, 1877
[22] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, Vol. 80. Birkhäuser, Boston, 1984 · Zbl 0545.49018
[23] Laplace, P.-S.: Traité de Mécanique Céleste; Suppléments au Livre X. Paris, 1805-1806. Reprinted in Œuvres Complètes. Vol. IV. Gauthier-Villar, Paris, 1878-1912
[24] Luckhaus, S.; Modica, L., The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Ration. Mech. Anal., 107, 71-83, (1989) · Zbl 0681.49012
[25] Mainik, A.; Mielke, A., Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differ. Equ., 22, 73-99, (2005) · Zbl 1161.74387
[26] Massari, U., Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in \({\mathbb{R}^n},\) Arch. Ration. Mech. Anal., 55, 357-382, (1974) · Zbl 0305.49047
[27] Mielke, A.: Evolution of rate-independent systems. In: Handbook of Differential Equations. Evolutionary equations. Vol. II. (Eds. Dafermos C.M. and Feireisl E.) Elsevier/North-Holland, Amsterdam, 461-559, 2005 · Zbl 1120.47062
[28] Mielke A.: Modeling and Analysis of Rate-independent Processes. Lipschitz Lectures. University of Bonn, Bonn (2007)
[29] Mielke, A.: Differential, energetic, and metric formulations for rate independent processes. In: Nonlinear PDEs and Applications. Lectures from the C.I.M.E. Summer School held in Cetraro, June 23-28, 2008 (Eds. Ambrosio L. and Savaré G.). Lectures Notes in Mathematics, Vol. 1813. Springer Verlag, Berlin. In print
[30] Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. In print (published online January 2011)
[31] Patankar, N., On the modeling of hydrophobic contact angles on rough surfaces, Langmuir, 19, 1249-1253, (2003)
[32] Quéré, D., Wetting and roughness, Annu. Rev. Mater. Res., 38, 71-99, (2008)
[33] Reshetnyak, Yu.G. : Weak convergence of completely additive vector functions on a set (Russian). Sibirsk. Mat. Zh. 9, 1386-1394 (1968); translation in Siberian Math. J. 9, 1039-1045 (1968)
[34] Srivastava S.M.: A Course on Borel Sets. Graduate Texts in Mathematics, Vol. 180. Springer, New York (1998) · Zbl 0903.28001
[35] Tamanini, I.: Regularity Results for Almost Minimal Oriented Hypersurfaces in\({\mathbb{R}^n} \). Quaderni del Dipartimento di Matematica, 1. Università di Lecce, Lecce, 1984 · Zbl 1191.35007
[36] Turco, A.; Alouges, F.; DeSimone, A., Wetting on rough surfaces and contact angle hysteresis, numerical experiments based on a phase field model, M2AN Math. Model. Numer. Anal., 43, 1027-1044, (2009) · Zbl 1375.76052
[37] Young, T., An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond., 95, 65-87, (1805)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.