×

zbMATH — the first resource for mathematics

Regularity of very weak solutions for nonhomogeneous elliptic equation. (English) Zbl 1276.35058

MSC:
35D30 Weak solutions to PDEs
35J15 Second-order elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35B65 Smoothness and regularity of solutions to PDEs
35R05 PDEs with low regular coefficients and/or low regular data
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adamas R. A., Sobolev Spaces (2003)
[2] DOI: 10.1016/j.jfa.2008.12.019 · Zbl 1173.58007
[3] Brezis H., Rend. Lincei Mat. Appl. 19 pp 335– (2008)
[4] Brezis H., Adv. Difference Equ. 1 pp 73– (1996)
[5] DOI: 10.1006/jfan.1997.3171 · Zbl 0908.35044
[6] Chen Y.-Z., Translations of Mathematical Monographs 174, in: Second Order Elliptic Equations and Elliptic Systems (1998)
[7] De Giorge E., Mem. Accad. Sci. Torino. 3 pp 25– (1957)
[8] DOI: 10.1016/j.jfa.2007.05.023 · Zbl 1137.35038
[9] DOI: 10.1016/j.jfa.2009.03.002 · Zbl 1173.35043
[10] DOI: 10.3934/dcds.2010.27.1037 · Zbl 1198.35095
[11] Hager R. A., Ann. Sc. Norm. Super Pisacl. Sci. 23 pp 283– (1971)
[12] DOI: 10.1016/j.jmaa.2008.06.008 · Zbl 1168.35013
[13] DOI: 10.1016/j.crma.2009.05.008 · Zbl 1198.35055
[14] Krasnosel’skii M. A., Convex Functions and Orlicz Spaces (1961)
[15] DOI: 10.1016/j.jfa.2006.11.018 · Zbl 1231.35029
[16] Meyers N. G., Ann. Sc. Norm. Super Pisacl. Sci. 17 pp 189– (1963)
[17] DOI: 10.1007/s00526-007-0155-0 · Zbl 1147.35042
[18] DOI: 10.1007/s00205-004-0323-8 · Zbl 1113.35062
[19] Serrin J., Ann. Sc. Norm. Super Pisacl. Sci. 19 pp 593– (1965)
[20] DOI: 10.1215/S0012-7094-04-12715-0 · Zbl 1130.35057
[21] DOI: 10.1016/j.jmaa.2008.07.071 · Zbl 1147.92005
[22] DOI: 10.1016/j.jfa.2011.11.027 · Zbl 1235.35072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.