Gas flow in ultra-tight shale strata. (English) Zbl 1275.76196

Summary: We study the gas flow processes in ultra-tight porous media in which the matrix pore network is composed of nanometre- to micrometre-size pores. We formulate a pressure-dependent permeability function, referred to as the apparent permeability function (APF), assuming that Knudsen diffusion and slip flow (the Klinkenberg effect) are the main contributors to the overall flow in porous media. The APF predicts that in nanometre-size pores, gas permeability values are as much as 10 times greater than results obtained by continuum hydrodynamics predictions, and with increasing pore size (i.e. of the order of the micrometre), gas permeability converges to continuum hydrodynamics values. In addition, the APF predicts that an increase in the fractal dimension of the pore surface leads to a decrease in Knudsen diffusion. Using the homogenization method, a rigorous analysis is performed to examine whether the APF is preserved throughout the process of upscaling from local scale to large scale. We use the well-known pulse-decay experiment to estimate the main parameter of the APF, which is Darcy permeability. Our newly derived late-transient analytical solution and the late-transient numerical solution consistently match the pressure decay data and yield approximately the same estimated value for Darcy permeability at the typical core-sample initial pressure range and pressure difference. Other parameters of the APF may be determined from independent laboratory experiments; however, a pulse-decay experiment can be used to estimate the unknown parameters of the APF if multiple tests are performed and/or the parameters are strictly constrained by upper and lower bounds.


76S05 Flows in porous media; filtration; seepage
76N15 Gas dynamics (general theory)
76R50 Diffusion
Full Text: DOI


[1] DOI: 10.1063/1.1559936
[2] DOI: 10.1080/108939599199864
[3] Chen, SPE J. 13 pp 400– (2008)
[4] Poling, The Properties of Gases and Liquids (2001)
[5] DOI: 10.1023/B:TIPM.0000021759.02545.d3
[6] DOI: 10.1017/S0022112003007225 · Zbl 1059.76060
[7] Burgdorfer, Trans. ASME: J. Basic Engng 81 pp 94– (1959)
[8] DOI: 10.1115/1.2921004
[9] Mills, Mass Transfer (2001)
[10] DOI: 10.1137/0802028 · Zbl 0773.90047
[11] DOI: 10.1021/jp0103272
[12] DOI: 10.1038/438044a
[13] DOI: 10.1306/08171111061
[14] DOI: 10.1115/1.4002922
[15] DOI: 10.1146/annurev.fl.27.010195.001353
[16] Klinkenberg, Drilling Production Practice pp 200– (1941)
[17] DOI: 10.1016/S0969-8043(02)00316-0
[18] Jones, SPE J. Reservoir Eval. Engng 12 pp 19– (1997)
[19] Jeans, The Dynamical Theory of Gases (1954)
[20] Javadpour, J. Can. Petrol. Technol. 51 pp 236– (2012)
[21] Javadpour, J. Can. Petrol. Technol. 46 pp 55– (2007)
[22] Javadpour, J. Can. Petrol. Technol. 48 pp 16– (2009)
[23] DOI: 10.1016/0148-9062(81)90979-7
[24] DOI: 10.1115/1.3254526
[25] DOI: 10.1126/science.1126298
[26] DOI: 10.1146/annurev.fluid.30.1.579
[27] DOI: 10.1115/1.2822013
[28] DOI: 10.1029/98WR02174
[29] DOI: 10.1002/fld.267 · Zbl 1058.76574
[30] Yamada, SPE J. 20 pp 357– (1980)
[31] DOI: 10.1016/0009-2509(92)80236-6
[32] DOI: 10.1016/j.fluid.2005.12.039
[33] DOI: 10.1029/JB085iB12p07059
[34] Auriault, Eur. J. Mech. A 9 pp 373– (1990)
[35] DOI: 10.1016/S0920-5861(99)00118-2
[36] DOI: 10.1007/s004770000031 · Zbl 0991.76086
[37] DOI: 10.1016/0020-7225(91)90001-J · Zbl 0749.73003
[38] DOI: 10.1007/s11242-010-9665-x
[39] Ruthven, Principles of Adsorption and Adsorption Processes (1984)
[40] DOI: 10.1016/S0017-9310(83)80110-0 · Zbl 0507.73099
[41] DOI: 10.1007/s11242-009-9432-z
[42] DOI: 10.1063/1.1707647
[43] DOI: 10.1029/JB073i006p02225
[44] Evazi, SPE J. 15 pp 326– (2010)
[45] Bourbie, SPE J. 22 pp 719– (1982)
[46] Errol, J. Fluid Mech. 437 pp 29– (2001)
[47] Wu, Appl. Phys. Lett. 93 (2008)
[48] Borwein, Convex Analysis and Nonlinear Optimization, Theory and Examples (2000) · Zbl 0953.90001
[49] DOI: 10.1111/j.1468-8123.2009.00244.x
[50] DOI: 10.1016/0148-9062(86)90968-X
[51] DOI: 10.1116/1.2943641
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.