×

zbMATH — the first resource for mathematics

Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties. (English) Zbl 1275.76133
Summary: The spatially developing compressible plane mixing layer with a convective Mach number of 0.7 is investigated by direct numerical simulation. A pair of equal and opposite oblique instability waves is introduced to perturb the mixing layer at the inlet. The full evolution process of instability, including formation of \({\Lambda}\)-vortices and hairpin vortices, breakdown of large structures and establishment of self-similar turbulence, is presented clearly in the simulation. In the transition process, the flow fields are populated sequentially by \({\Lambda}\)-vortices, hairpin vortices and ’flower’ structures. This is the first direct evidence showing the dominance of these structures in the spatially developing mixing layer. Hairpin vortices are found to play an important role in the breakdown of the flow. The legs of hairpin vortices first evolve into sheaths with intense vorticity then break up into small slender vortices. The later flower structures are produced by the instability of the heads of the hairpin vortices. They prevail for a long distance in the mixing layer until the flow starts to settle down into its self-similar state. The preponderance of slender inclined streamwise vortices is observed in the transversal middle zone of the transition region after the breakup of the hairpin legs. This predominance of streamwise vortices also persists in the self-similar turbulent region, though the vortices there are found to be relatively very weak. The evolution of both the mean streamwise velocity profile and the Reynolds stresses is found to have close connection to the behaviour of the large vortex structures. High growth rates of the momentum and vorticity thicknesses are observed in the transition region of the flow. The growth rates in the self-similar turbulence region decay to a value that agrees well with previous experimental and numerical studies. Shocklets occur in the simulation, and their formation mechanisms are elaborated and categorized. This is the first three-dimensional simulation that captures shocklets at this low convective Mach number.

MSC:
76F25 Turbulent transport, mixing
76F50 Compressibility effects in turbulence
76F65 Direct numerical and large eddy simulation of turbulence
76M20 Finite difference methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.869619 · Zbl 1185.76855 · doi:10.1063/1.869619
[2] DOI: 10.1017/S0022112004001727 · Zbl 1065.76006 · doi:10.1017/S0022112004001727
[3] DOI: 10.1007/BF01668899 · doi:10.1007/BF01668899
[4] DOI: 10.1017/S0022112095000310 · doi:10.1017/S0022112095000310
[5] DOI: 10.2514/3.11922 · doi:10.2514/3.11922
[6] DOI: 10.1063/1.868460 · Zbl 1025.76541 · doi:10.1063/1.868460
[7] DOI: 10.2514/3.11016 · doi:10.2514/3.11016
[8] DOI: 10.2514/3.11891 · doi:10.2514/3.11891
[9] DOI: 10.1017/S0022112000003177 · Zbl 0969.76503 · doi:10.1017/S0022112000003177
[10] DOI: 10.1017/S002211207400190X · doi:10.1017/S002211207400190X
[11] DOI: 10.2514/3.10617 · doi:10.2514/3.10617
[12] Townsend, The Structure of Turbulent Shear Flows (1976) · Zbl 0325.76063
[13] DOI: 10.2514/3.60135 · doi:10.2514/3.60135
[14] DOI: 10.1016/j.ijheatfluidflow.2006.03.028 · doi:10.1016/j.ijheatfluidflow.2006.03.028
[15] DOI: 10.1016/0021-9991(87)90041-6 · Zbl 0619.76089 · doi:10.1016/0021-9991(87)90041-6
[16] DOI: 10.1007/BF02897166 · Zbl 0980.76034 · doi:10.1007/BF02897166
[17] DOI: 10.1016/0021-9991(81)90210-2 · Zbl 0468.76066 · doi:10.1016/0021-9991(81)90210-2
[18] Batchelor, The Theory of Homogeneous Turbulence (1959) · Zbl 0053.14404
[19] DOI: 10.1017/S0022112000001622 · Zbl 0998.76036 · doi:10.1017/S0022112000001622
[20] DOI: 10.1016/S0378-4754(02)00179-9 · Zbl 1015.65031 · doi:10.1016/S0378-4754(02)00179-9
[21] DOI: 10.1016/S0894-1777(96)00102-1 · doi:10.1016/S0894-1777(96)00102-1
[22] DOI: 10.1017/S0022112098003887 · Zbl 0945.76504 · doi:10.1017/S0022112098003887
[23] DOI: 10.1017/S0022112095003223 · Zbl 0856.76023 · doi:10.1017/S0022112095003223
[24] DOI: 10.1063/1.857816 · doi:10.1063/1.857816
[25] DOI: 10.1017/S0022112091001684 · Zbl 0717.76094 · doi:10.1017/S0022112091001684
[26] Dimotakis, High-speed Flight Propulsion Systems vol. 137 pp 265– (1991)
[27] DOI: 10.2514/3.10437 · doi:10.2514/3.10437
[28] DOI: 10.2514/3.10412 · doi:10.2514/3.10412
[29] DOI: 10.1088/1468-5248/3/1/009 · doi:10.1088/1468-5248/3/1/009
[30] DOI: 10.1017/S0022112092002696 · Zbl 0825.76311 · doi:10.1017/S0022112092002696
[31] Pradeep, Turbulence Structure and Vortex Dynamics (2000)
[32] DOI: 10.1017/S0022112088003325 · doi:10.1017/S0022112088003325
[33] DOI: 10.1063/1.868621 · doi:10.1063/1.868621
[34] DOI: 10.1017/S0022112001006978 · Zbl 1156.76403 · doi:10.1017/S0022112001006978
[35] DOI: 10.1017/S0022112082002973 · doi:10.1017/S0022112082002973
[36] DOI: 10.1017/S0022112003004403 · Zbl 1109.76005 · doi:10.1017/S0022112003004403
[37] DOI: 10.1017/S0022112091003397 · doi:10.1017/S0022112091003397
[38] DOI: 10.1017/S0022112093000473 · Zbl 0825.76685 · doi:10.1017/S0022112093000473
[39] Morduchow, J. Aero. Sci. 16 pp 674– (1949)
[40] DOI: 10.1007/BFb0012628 · doi:10.1007/BFb0012628
[41] DOI: 10.2514/3.12988 · Zbl 0850.76247 · doi:10.2514/3.12988
[42] DOI: 10.1016/j.jcp.2007.09.008 · Zbl 1128.65070 · doi:10.1016/j.jcp.2007.09.008
[43] DOI: 10.1063/1.1505035 · Zbl 1185.76210 · doi:10.1063/1.1505035
[44] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[45] DOI: 10.1007/BF01063424 · Zbl 0712.76052 · doi:10.1007/BF01063424
[46] Wygnanski, Turbulent Shear Flows (1979)
[47] DOI: 10.1006/jcph.1996.0130 · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[48] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[49] DOI: 10.1016/0045-7930(95)00023-6 · Zbl 0873.76050 · doi:10.1016/0045-7930(95)00023-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.