×

zbMATH — the first resource for mathematics

Direct numerical simulation of axisymmetric wakes embedded in turbulence. (English) Zbl 1275.76128
Summary: Direct numerical simulation has been used to study the effects of external turbulence on axisymmetric wakes. In the absence of such turbulence, the time-developing axially homogeneous wake is found to have the self-similar properties expected whereas, in the absence of the wake, the turbulence fields had properties similar to Saffman-type turbulence. Merging of the two flows was undertaken for three different levels of external turbulence (relative to the wake strength) and it is shown that the presence of the external turbulence enhances the decay rate of the wake, with the new decay rates increasing with the relative strength of the initial external turbulence. The external turbulence is found to destroy any possibility of self-similarity within the developing wake, causing a significant transformation in the latter as it gradually evolves towards the former.

MSC:
76F10 Shear flows and turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Redford, J. Fluid Mech. 710 pp 419– (2012) · Zbl 1275.76127 · doi:10.1017/jfm.2012.371
[2] DOI: 10.1007/s00348-012-1288-2 · doi:10.1007/s00348-012-1288-2
[3] DOI: 10.1007/s10494-008-9151-5 · Zbl 1257.76040 · doi:10.1007/s10494-008-9151-5
[4] DOI: 10.1017/S0022112086000289 · doi:10.1017/S0022112086000289
[5] DOI: 10.2514/3.12353 · doi:10.2514/3.12353
[6] DOI: 10.1017/CBO9780511840531 · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[7] DOI: 10.1007/BF00198009 · doi:10.1007/BF00198009
[8] DOI: 10.1017/S0022112098001426 · Zbl 0928.76031 · doi:10.1017/S0022112098001426
[9] DOI: 10.1063/1.1412246 · Zbl 1184.76191 · doi:10.1063/1.1412246
[10] DOI: 10.1063/1.2191885 · doi:10.1063/1.2191885
[11] George, Advances in Turbulence pp 39– (1989)
[12] DOI: 10.1017/S0022112009991807 · Zbl 1183.76749 · doi:10.1017/S0022112009991807
[13] DOI: 10.1063/1.3632102 · Zbl 06423183 · doi:10.1063/1.3632102
[14] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[15] DOI: 10.1115/1.3605089 · doi:10.1115/1.3605089
[16] DOI: 10.1063/1.1539855 · Zbl 1185.76191 · doi:10.1063/1.1539855
[17] DOI: 10.1063/1.1536976 · Zbl 1185.76187 · doi:10.1063/1.1536976
[18] DOI: 10.1017/S002211207800275X · doi:10.1017/S002211207800275X
[19] DOI: 10.1017/S0022112006001625 · Zbl 1100.76028 · doi:10.1017/S0022112006001625
[20] Batchelor, An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[21] DOI: 10.1017/S0022112089001941 · doi:10.1017/S0022112089001941
[22] DOI: 10.1017/S0022112004000989 · Zbl 1131.76324 · doi:10.1017/S0022112004000989
[23] DOI: 10.1063/1.1616031 · Zbl 1186.76040 · doi:10.1063/1.1616031
[24] DOI: 10.1063/1.3425628 · Zbl 1190.76010 · doi:10.1063/1.3425628
[25] DOI: 10.2514/3.12018 · doi:10.2514/3.12018
[26] DOI: 10.1017/S0022112096001589 · Zbl 0860.76037 · doi:10.1017/S0022112096001589
[27] DOI: 10.1063/1.1693225 · doi:10.1063/1.1693225
[28] Townsend, Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[29] DOI: 10.1063/1.868274 · doi:10.1063/1.868274
[30] Press, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (1992) · Zbl 0778.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.