×

zbMATH — the first resource for mathematics

Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. (English) Zbl 1275.76125
Summary: Streamwise rolls and accompanying streamwise streaks are ubiquitous in wall-bounded shear flows, both in natural settings, such as the atmospheric boundary layer, as well as in controlled settings, such as laboratory experiments and numerical simulations. The streamwise roll and streak structure has been associated with both transition from the laminar to the turbulent state and with maintenance of the turbulent state. This close association of the streamwise roll and streak structure with the transition to and maintenance of turbulence in wall-bounded shear flow has engendered intense theoretical interest in the dynamics of this structure. In this work, stochastic structural stability theory (SSST) is applied to the problem of understanding the dynamics of the streamwise roll and streak structure. The method of analysis used in SSST comprises a stochastic turbulence model (STM) for the dynamics of perturbations from the streamwise-averaged flow coupled to the associated streamwise-averaged flow dynamics. The result is an autonomous, deterministic, nonlinear dynamical system for evolving a second-order statistical mean approximation of the turbulent state. SSST analysis reveals a robust interaction between streamwise roll and streak structures and turbulent perturbations in which the perturbations are systematically organized through their interaction with the streak to produce Reynolds stresses that coherently force the associated streamwise roll structure. If a critical value of perturbation turbulence intensity is exceeded, this feedback results in modal instability of the combined streamwise roll/streak and associated turbulence complex in the SSST system. In this instability, the perturbations producing the destabilizing Reynolds stresses are predicted by the STM to take the form of oblique structures, which is consistent with observations. In the SSST system this instability exists together with the transient growth process. These processes cooperate in determining the structure of growing streamwise roll and streak. For this reason, comparison of SSST predictions with experiments requires accounting for both the amplitude and structure of initial perturbations as well as the influence of the SSST instability. Over a range of supercritical turbulence intensities in Couette flow, this instability equilibrates to form finite amplitude time-independent streamwise roll and streak structures. At sufficiently high levels of forcing of the perturbation field, equilibration of the streamwise roll and streak structure does not occur and the flow transitions to a time-dependent state. This time-dependent state is self-sustaining in the sense that it persists when the forcing is removed. Moreover, this self-sustaining state rapidly evolves toward a minimal representation of wall-bounded shear flow turbulence in which the dynamics is limited to interaction of the streamwise-averaged flow with a perturbation structure at one streamwise wavenumber. In this minimal realization of the self-sustaining process, the time-dependent streamwise roll and streak structure is maintained by perturbation Reynolds stresses, just as is the case of the time-independent streamwise roll and streak equilibria. However, the perturbation field is maintained not by exogenously forced turbulence, but rather by an endogenous and essentially non-modal parametric growth process that is inherent to time-dependent dynamical systems.

MSC:
76F10 Shear flows and turbulence
76E05 Parallel shear flows in hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1088/0004-637X/727/2/127 · doi:10.1088/0004-637X/727/2/127
[2] DOI: 10.1063/1.861156 · Zbl 0308.76030 · doi:10.1063/1.861156
[3] DOI: 10.1175/JAS-D-11-0200.1 · doi:10.1175/JAS-D-11-0200.1
[4] DOI: 10.1175/1520-0469(1996)053&lt;1781:TQLEOA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1996)053<1781:TQLEOA>2.0.CO;2
[5] DOI: 10.1017/S0022112083000634 · doi:10.1017/S0022112083000634
[6] DOI: 10.1023/B:GEOP.0000028164.58516.b2 · doi:10.1023/B:GEOP.0000028164.58516.b2
[7] DOI: 10.1063/1.857808 · doi:10.1063/1.857808
[8] DOI: 10.1017/S0022112090000829 · doi:10.1017/S0022112090000829
[9] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[10] DOI: 10.1103/PhysRevLett.106.134502 · doi:10.1103/PhysRevLett.106.134502
[11] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[12] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[13] Alfredsson, Proc. Transitional Boundary Layers in Aeronautics pp 373– (1996)
[14] DOI: 10.1175/2007JAS2510.1 · doi:10.1175/2007JAS2510.1
[15] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[16] DOI: 10.1063/1.3490719 · Zbl 06437470 · doi:10.1063/1.3490719
[17] Lumley, Atmospheric Turbulence and Radio Wave Propagation pp 166– (1967)
[18] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[19] DOI: 10.1063/1.1564826 · Zbl 1186.76310 · doi:10.1063/1.1564826
[20] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[21] DOI: 10.1088/0169-5983/41/2/021403 · Zbl 1286.76008 · doi:10.1088/0169-5983/41/2/021403
[22] DOI: 10.1017/S0022112094004234 · Zbl 0813.76024 · doi:10.1017/S0022112094004234
[23] DOI: 10.1017/S0022112096007537 · Zbl 0875.76160 · doi:10.1017/S0022112096007537
[24] DOI: 10.1017/S0022112062000014 · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[25] DOI: 10.1063/1.870437 · Zbl 1184.76284 · doi:10.1063/1.870437
[26] DOI: 10.1017/S0022112071002490 · doi:10.1017/S0022112071002490
[27] DOI: 10.1146/annurev.fluid.39.050905.110153 · doi:10.1146/annurev.fluid.39.050905.110153
[28] DOI: 10.1017/S0022112001006243 · Zbl 0996.76034 · doi:10.1017/S0022112001006243
[29] DOI: 10.1017/S0022112005004295 · Zbl 1074.76016 · doi:10.1017/S0022112005004295
[30] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[31] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[32] DOI: 10.1017/S0022112086000551 · Zbl 0624.76069 · doi:10.1017/S0022112086000551
[33] DOI: 10.1017/S0022112000002469 · Zbl 0983.76027 · doi:10.1017/S0022112000002469
[34] DOI: 10.1017/S0022112010003629 · Zbl 1221.76104 · doi:10.1017/S0022112010003629
[35] DOI: 10.1017/S0022112009992151 · Zbl 1189.76191 · doi:10.1017/S0022112009992151
[36] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[37] DOI: 10.1063/1.1608939 · Zbl 1186.76231 · doi:10.1063/1.1608939
[38] DOI: 10.1063/1.2841621 · Zbl 1182.76325 · doi:10.1063/1.2841621
[39] DOI: 10.1017/S0022112007008336 · Zbl 1125.76305 · doi:10.1017/S0022112007008336
[40] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[41] DOI: 10.1017/S0022112010002892 · Zbl 1205.76085 · doi:10.1017/S0022112010002892
[42] DOI: 10.1017/S0022112008005065 · Zbl 1171.76383 · doi:10.1017/S0022112008005065
[43] DOI: 10.1017/S002211200800267X · Zbl 1151.76453 · doi:10.1017/S002211200800267X
[44] DOI: 10.1017/S0022112010003861 · Zbl 1225.76149 · doi:10.1017/S0022112010003861
[45] DOI: 10.1063/1.3258666 · doi:10.1063/1.3258666
[46] DOI: 10.1175/2007JPO3889.1 · doi:10.1175/2007JPO3889.1
[47] DOI: 10.1175/2008JAS2611.1 · doi:10.1175/2008JAS2611.1
[48] DOI: 10.1175/JAS4016.1 · doi:10.1175/JAS4016.1
[49] DOI: 10.1175/1520-0469(2003)060&lt;2101:SSOTJ&gt;2.0.CO;2 · doi:10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2
[50] DOI: 10.1175/1520-0469(1999)056&lt;3622:PGASIT&gt;2.0.CO;2 · doi:10.1175/1520-0469(1999)056<3622:PGASIT>2.0.CO;2
[51] DOI: 10.1063/1.868897 · Zbl 1086.76034 · doi:10.1063/1.868897
[52] DOI: 10.1007/s001620050091 · Zbl 0926.76057 · doi:10.1007/s001620050091
[53] DOI: 10.1175/1520-0469(1999)056&lt;3416:ALSMOA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2
[54] DOI: 10.1175/1520-0469(1996)053&lt;2041:GSTPIN&gt;2.0.CO;2 · doi:10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2
[55] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[56] DOI: 10.1175/1520-0469(1996)053&lt;2025:GSTPIA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
[57] DOI: 10.1017/S0022112094003083 · doi:10.1017/S0022112094003083
[58] DOI: 10.1175/1520-0469(1995)052&lt;1642:SDOTMA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1995)052<1642:SDOTMA>2.0.CO;2
[59] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[60] DOI: 10.1017/S0022112001004189 · Zbl 0987.76034 · doi:10.1017/S0022112001004189
[61] DOI: 10.1103/PhysRevLett.81.4140 · doi:10.1103/PhysRevLett.81.4140
[62] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[63] DOI: 10.1016/S0997-7546(99)80016-8 · Zbl 0925.76005 · doi:10.1016/S0997-7546(99)80016-8
[64] DOI: 10.1017/S002211200100667X · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[65] DOI: 10.1007/978-1-4613-0185-1 · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[66] DOI: 10.1063/1.858367 · doi:10.1063/1.858367
[67] DOI: 10.1063/1.3005836 · Zbl 1182.76669 · doi:10.1063/1.3005836
[68] DOI: 10.1063/1.3614480 · Zbl 06422722 · doi:10.1063/1.3614480
[69] DOI: 10.1063/1.1493791 · Zbl 1185.76090 · doi:10.1063/1.1493791
[70] DOI: 10.1017/S0022112001006255 · Zbl 1037.76023 · doi:10.1017/S0022112001006255
[71] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[72] DOI: 10.1017/S0022112004000941 · Zbl 1131.76326 · doi:10.1017/S0022112004000941
[73] DOI: 10.1017/S0022112098001323 · Zbl 0927.76029 · doi:10.1017/S0022112098001323
[74] DOI: 10.1063/1.1456062 · Zbl 1185.76065 · doi:10.1063/1.1456062
[75] DOI: 10.1017/S0022112093003738 · Zbl 0789.76026 · doi:10.1017/S0022112093003738
[76] DOI: 10.1017/S0022112098001281 · Zbl 0924.76028 · doi:10.1017/S0022112098001281
[77] DOI: 10.1017/S0022112061000196 · Zbl 0096.21201 · doi:10.1017/S0022112061000196
[78] DOI: 10.1175/2010JPO4217.1 · doi:10.1175/2010JPO4217.1
[79] DOI: 10.1063/1.870237 · Zbl 1149.76317 · doi:10.1063/1.870237
[80] DOI: 10.1017/CBO9780511800955 · Zbl 0958.76001 · doi:10.1017/CBO9780511800955
[81] DOI: 10.1017/S0022112003004051 · Zbl 1034.76021 · doi:10.1017/S0022112003004051
[82] DOI: 10.1146/annurev.fl.25.010193.002543 · doi:10.1146/annurev.fl.25.010193.002543
[83] DOI: 10.1063/1.1398044 · Zbl 1184.76042 · doi:10.1063/1.1398044
[84] DOI: 10.1017/S0022112003005007 · Zbl 1063.76559 · doi:10.1017/S0022112003005007
[85] Benney, Stud. Appl. Maths 70 pp 1– (1984) · Zbl 0566.76046 · doi:10.1002/sapm19847011
[86] DOI: 10.1103/PhysRevE.55.2023 · doi:10.1103/PhysRevE.55.2023
[87] DOI: 10.1103/PhysRevLett.72.1188 · doi:10.1103/PhysRevLett.72.1188
[88] DOI: 10.1063/1.858894 · Zbl 0809.76078 · doi:10.1063/1.858894
[89] DOI: 10.1175/1520-0469(1993)050&lt;0200:SFOPVI&gt;2.0.CO;2 · doi:10.1175/1520-0469(1993)050<0200:SFOPVI>2.0.CO;2
[90] DOI: 10.1175/1520-0469(1993)050&lt;4044:SDOBW&gt;2.0.CO;2 · doi:10.1175/1520-0469(1993)050<4044:SDOBW>2.0.CO;2
[91] DOI: 10.1063/1.858534 · doi:10.1063/1.858534
[92] Waleffe, Stud. Appl. Maths 95 pp 319– (1995) · Zbl 0838.76026 · doi:10.1002/sapm1995953319
[93] DOI: 10.1063/1.858574 · Zbl 0779.76030 · doi:10.1063/1.858574
[94] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[95] DOI: 10.1063/1.866609 · doi:10.1063/1.866609
[96] DOI: 10.1017/jfm.2011.228 · Zbl 1241.76221 · doi:10.1017/jfm.2011.228
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.