×

zbMATH — the first resource for mathematics

Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. (English) Zbl 1275.76016
Summary: Two-dimensional Lagrangian acceleration statistics of inertial particles in a turbulent boundary layer with free-stream turbulence are determined by means of a particle tracking technique using a high-speed camera moving along the side of the wind tunnel at the mean flow speed. The boundary layer is formed above a flat plate placed horizontally in the tunnel, and water droplets are fed into the flow using two different methods: sprays placed downstream from an active grid, and tubes fed into the boundary layer from humidifiers. For the flow conditions studied, the sprays produce Stokes numbers varying from 0.47 to 1.2, and the humidifiers produce Stokes numbers varying from 0.035 to 0.25, where the low and high values refer to the outer boundary layer edge and the near-wall region, respectively. The Froude number is approximately 1.0 for the sprays and 0.25 for the humidifiers, with a small variation within the boundary layer. The free-stream turbulence is varied by operating the grid in the active mode as well as a passive mode (the latter behaves as a conventional grid). The boundary layer momentum-thickness Reynolds numbers are 840 and 725 for the active and passive grid respectively. At the outer edge of the boundary layer, where the shear is weak, the acceleration probability density functions are similar to those previously observed in isotropic turbulence for inertial particles. As the boundary layer plate is approached, the tails of the probability density functions narrow, become negatively skewed, and their peak occurs at negative accelerations (decelerations in the streamwise direction). The mean deceleration and its root mean square (r.m.s.) increase to large values close to the plate. These effects are more pronounced at higher Stokes number. In the vertical direction, there is a slight downward mean deceleration and its r.m.s., which is lower in magnitude than that of the streamwise component, peaks in the buffer region. Although there are free-stream turbulence effects, and the complex boundary layer structure plays an important role, a simple model suggests that the acceleration behaviour is dominated by shear, gravity and inertia. The results are contrasted with inertial particles in isotropic turbulence and with fluid particle acceleration statistics in a boundary layer. The background velocity field is documented by means of hot-wire anemometry and laser Doppler velocimetry measurements. These appear to be the first Lagrangian acceleration measurements of inertial particles in a shear flow.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76F40 Turbulent boundary layers
76F55 Statistical turbulence modeling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mordant, Physica 193 pp 245– (2004)
[2] DOI: 10.1103/PhysRevLett.87.214501 · doi:10.1103/PhysRevLett.87.214501
[3] DOI: 10.1063/1.1644576 · Zbl 1186.76106 · doi:10.1063/1.1644576
[4] DOI: 10.1017/S0022112087000193 · Zbl 0617.76058 · doi:10.1017/S0022112087000193
[5] DOI: 10.1103/PhysRevLett.92.144502 · doi:10.1103/PhysRevLett.92.144502
[6] DOI: 10.1017/S0022112006009177 · Zbl 1087.76056 · doi:10.1017/S0022112006009177
[7] DOI: 10.1017/S0022112002001738 · Zbl 1152.76401 · doi:10.1017/S0022112002001738
[8] DOI: 10.1063/1.858299 · doi:10.1063/1.858299
[9] DOI: 10.1016/0169-5983(91)90030-M · doi:10.1016/0169-5983(91)90030-M
[10] DOI: 10.1126/science.1121726 · doi:10.1126/science.1121726
[11] DOI: 10.1016/j.ijheatfluidflow.2006.02.003 · doi:10.1016/j.ijheatfluidflow.2006.02.003
[12] DOI: 10.1017/S002211200500844X · Zbl 1097.76040 · doi:10.1017/S002211200500844X
[13] DOI: 10.1007/s00348-006-0152-7 · doi:10.1007/s00348-006-0152-7
[14] DOI: 10.1017/S0022112097005284 · Zbl 0890.76085 · doi:10.1017/S0022112097005284
[15] DOI: 10.1103/PhysRevLett.97.144507 · doi:10.1103/PhysRevLett.97.144507
[16] DOI: 10.1111/j.1600-0889.2006.00230.x · doi:10.1111/j.1600-0889.2006.00230.x
[17] DOI: 10.1088/1367-2630/10/1/013012 · doi:10.1088/1367-2630/10/1/013012
[18] DOI: 10.1063/1.2976174 · Zbl 1182.76037 · doi:10.1063/1.2976174
[19] DOI: 10.1088/0957-0233/13/9/301 · doi:10.1088/0957-0233/13/9/301
[20] DOI: 10.1103/PhysRevLett.96.024503 · doi:10.1103/PhysRevLett.96.024503
[21] DOI: 10.1017/S0022112002001593 · Zbl 1152.76303 · doi:10.1017/S0022112002001593
[22] DOI: 10.1017/S0022112094002703 · doi:10.1017/S0022112094002703
[23] DOI: 10.1016/j.ijmultiphaseflow.2005.07.001 · Zbl 1388.76396 · doi:10.1016/j.ijmultiphaseflow.2005.07.001
[24] Kaftori, Phys. Fluids 7 pp 1007– (1995)
[25] DOI: 10.1017/S0022112002001842 · Zbl 1152.76315 · doi:10.1017/S0022112002001842
[26] DOI: 10.1063/1.868551 · doi:10.1063/1.868551
[27] DOI: 10.1209/0295-5075/81/34002 · doi:10.1209/0295-5075/81/34002
[28] DOI: 10.1007/s003480000229 · doi:10.1007/s003480000229
[29] DOI: 10.1017/S0022112007006076 · Zbl 1122.76044 · doi:10.1017/S0022112007006076
[30] DOI: 10.1088/0957-0233/8/12/013 · doi:10.1088/0957-0233/8/12/013
[31] DOI: 10.1017/S0022112095002126 · Zbl 0849.76028 · doi:10.1017/S0022112095002126
[32] DOI: 10.1115/1.2817374 · doi:10.1115/1.2817374
[33] DOI: 10.1017/S0022112089001941 · doi:10.1017/S0022112089001941
[34] DOI: 10.1017/S0022112096004454 · Zbl 0901.76089 · doi:10.1017/S0022112096004454
[35] DOI: 10.1017/S002211200300747X · Zbl 1067.76506 · doi:10.1017/S002211200300747X
[36] DOI: 10.1063/1.858045 · doi:10.1063/1.858045
[37] DOI: 10.1063/1.1313552 · Zbl 1184.76500 · doi:10.1063/1.1313552
[38] Gulitski, J. Fluid Mech. 589 pp 83– (2007)
[39] DOI: 10.1146/annurev.fluid.35.101101.161125 · Zbl 1125.76401 · doi:10.1146/annurev.fluid.35.101101.161125
[40] DOI: 10.1029/2003GL018185 · doi:10.1029/2003GL018185
[41] DOI: 10.1103/PhysRevLett.100.054503 · doi:10.1103/PhysRevLett.100.054503
[42] Ghosh, Proc. R. Soc. Lond. 461 pp 3059– (2005)
[43] DOI: 10.1103/PhysRevLett.100.214501 · doi:10.1103/PhysRevLett.100.214501
[44] DOI: 10.2514/3.12187 · doi:10.2514/3.12187
[45] DOI: 10.1017/S0022112008000372 · Zbl 1151.76346 · doi:10.1017/S0022112008000372
[46] DOI: 10.1021/ie50571a039 · doi:10.1021/ie50571a039
[47] DOI: 10.1017/S0022112000002627 · Zbl 0967.76039 · doi:10.1017/S0022112000002627
[48] Elperin, Phys. Rev. 66 pp 036302– (2002)
[49] DOI: 10.1103/PhysRevLett.99.184502 · doi:10.1103/PhysRevLett.99.184502
[50] DOI: 10.1017/S0022112092002532 · doi:10.1017/S0022112092002532
[51] DOI: 10.1016/S0301-9322(02)00007-1 · Zbl 1136.76612 · doi:10.1016/S0301-9322(02)00007-1
[52] DOI: 10.1007/s003480000240 · doi:10.1007/s003480000240
[53] DOI: 10.1063/1.869059 · doi:10.1063/1.869059
[54] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[55] DOI: 10.1088/1367-2630/8/6/102 · doi:10.1088/1367-2630/8/6/102
[56] DOI: 10.1017/S0022112005004568 · Zbl 1098.76071 · doi:10.1017/S0022112005004568
[57] DOI: 10.1007/s00348-005-0068-7 · doi:10.1007/s00348-005-0068-7
[58] Christensen, Exps. Fluids 33 pp 759– (2002) · doi:10.1007/s00348-002-0488-6
[59] DOI: 10.1017/S0022112096007562 · doi:10.1017/S0022112096007562
[60] DOI: 10.1063/1.864230 · Zbl 0538.76031 · doi:10.1063/1.864230
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.