×

zbMATH — the first resource for mathematics

Supply chain networks with global outsourcing and quick-response production under demand and cost uncertainty. (English) Zbl 1274.90067
Summary: This paper develops a modeling and computational framework for supply chain networks with global outsourcing and quick-response production under demand and cost uncertainty. Our model considers multiple off-shore suppliers, multiple manufacturers, and multiple demand markets. Using variational inequality theory, we formulate the governing equilibrium conditions of the competing decision-makers (the manufacturers) who are faced with two-stage stochastic programming problems but who also have to cooperate with the other decision-makers (the off-shore suppliers). Our theoretical and analytical results shed light on the value of outsourcing from novel real option perspectives. Moreover, our simulation studies reveal important managerial insights regarding how demand and cost uncertainty affects the profits, the risks, as well as the global outsourcing and quick-production decisions of supply chain firms under competition.

MSC:
90B15 Stochastic network models in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alvarez, H. R. L., & Stenbacka, R. (2007). Partial outsourcing: a real options perspective. International Journal of Industrial Organization, 25, 91–102. · doi:10.1016/j.ijindorg.2006.01.003
[2] Barbarosoglu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. The Journal of the Operational Research Society, 55, 43–53. · Zbl 1095.90586 · doi:10.1057/palgrave.jors.2601652
[3] Barnes-Schuster, D., Bassok, Y., & Anupindi, R. (2002). Coordination and flexibility in supply contracts with options. Manufacturing & Service Operations Management, 4(3), 171–207. · doi:10.1287/msom.4.3.171.7754
[4] Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear programming: theory and algorithms. New York: Wiley. · Zbl 0774.90075
[5] Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer. · Zbl 0892.90142
[6] Brand√£o, L. E., & Dyer, J. (2005). Decision analysis and real options: a discrete time approach to real option valuation. Annals of Operations Research, 135(1), 21–39. · Zbl 1112.91028 · doi:10.1007/s10479-005-6233-9
[7] Burnetas, A., & Ritchken, P. (2005). Option pricing with downward-sloping demand curves: the case of supply chain options. Management Science, 51(4), 566–580. · Zbl 1145.91341 · doi:10.1287/mnsc.1040.0342
[8] Cachon, G. P., & Swinney, R. (2009). Purchasing, pricing, and quick response in the presence of strategic consumers. Management Science, 55(3), 497–511. · Zbl 1232.91418 · doi:10.1287/mnsc.1080.0948
[9] Cachon, G. P., & Swinney, R. (2011). The value of fast fashion: quick response, enhanced design, and strategic consumer behavior. Management Science, 57, 778–795. · Zbl 1214.90070 · doi:10.1287/mnsc.1100.1303
[10] CNN Tech (2004). Zara: a model fashion retailer. http://edition.cnn.com/2004/TECH/07/19/spain.zara/index.html . Accessed 20 April 2011.
[11] Cohen, S., Geissbauer, R., Bhandari, A., & D’heur, M. (2008). Sixth annual survey by PRTM management consultants: global supply chain trends 2008–2010.
[12] Cohen, M. A., & Mallik, S. (1997). Global supply chains: research and applications. Production and Operations Management, 6(3), 193–210. · doi:10.1111/j.1937-5956.1997.tb00426.x
[13] Coyle, J. J., Langley, C. J., Gibson, B., Novack, R. A., & Bardi, E. (2008). Supply chain management: a logistics perspective (8th edn.). South-Western Cengage Learning: Mason.
[14] Cruz, J. M., & Wakolbinger, T. (2008). Multiperiod effects of corporate social responsibility on supply chain networks, transaction costs, emissions, and risk. International Journal of Production Economics, 116(1), 61–74. · doi:10.1016/j.ijpe.2008.07.011
[15] Cruz, J. M., Nagurney, A., & Wakolbinger, T. (2006). Financial engineering of the integration of global supply chain networks and social networks with risk management. Naval Research Logistics, 53, 674–696. · Zbl 1106.91055 · doi:10.1002/nav.20179
[16] Cucchiella, F., & Gastaldi, M. (2006). Risk management in supply chain: a real option approach. International Journal of Manufacturing Technology and Management, 17(6), 700–720. · doi:10.1108/17410380610678756
[17] Dasu, S., & Li, L. (1997). Optimal operating policies in the presence of exchange rate variability. Management Science, 43(5), 705–722. · Zbl 0890.90018 · doi:10.1287/mnsc.43.5.705
[18] Datta, S. (2005). Strategic outsourcing: a real option approach. Paper presented at the Doctoral Symposium of Bristol Business School, Bristol Business School, Bristol, January.
[19] Derman, C., Olkin, I., & Gleser, L. J. (1973). A guide to probability theory and application. Holt, Rinehart and Winston. · Zbl 0428.60001
[20] Dong, J., Zhang, D., & Nagurney, A. (2004). A supply chain network equilibrium model with random demands. European Journal of Operational Research, 156, 194–212. · Zbl 1044.90009 · doi:10.1016/S0377-2217(03)00023-7
[21] Dong, J., Zhang, D., Yan, H., & Nagurney, A. (2005). Multitiered supply chain networks: multicriteria decision-making under uncertainty. Annals of Operations Research, 135, 155–178. · Zbl 1112.90003 · doi:10.1007/s10479-005-6239-3
[22] Dupacova, J. (1996). Scenario-based stochastic programs: resistance with respect to sample. Annals of Operations Research, 64, 21–38. · Zbl 0854.90107 · doi:10.1007/BF02187639
[23] Eppen, G. D., & Iyer, A. V. (1997). Improved fashion buying with Bayesian updating. Operations Research, 45(6), 805–819. · Zbl 0895.90104 · doi:10.1287/opre.45.6.805
[24] Fisher, M., Rajaram, K., & Raman, A. (2001). Optimizing inventory replenishment of retail fashion products. Manufacturing & Service Operations Management, 3(3), 230–241. · doi:10.1287/msom.3.3.230.9889
[25] Fisher, M., & Raman, A. (1996). Reducing the cost of demand uncertainty through accurate response to early sales. Operations Research, 44(1), 87–99. · Zbl 0847.90065 · doi:10.1287/opre.44.1.87
[26] Gabay, D., & Moulin, H. (1980). On the uniqueness and stability of Nash equilibria in noncooperative games. In A. Bensoussan, P. Kleindorfer, & C. S. Tapiero (Eds.), Applied stochastic control in econometrics and management science (pp. 271–294). Amsterdam: North-Holland. · Zbl 0461.90085
[27] Iyer, A. V., & Bergen, M. E. (1997). Quick response in manufacturer retailer channels. Management Science, 43(4), 559–570. · Zbl 0888.90046 · doi:10.1287/mnsc.43.4.559
[28] Jiang, B., Yao, T., & Feng, B. (2008). Valuate outsourcing contracts from vendors’ perspective: a real options approach. Decision Sciences, 39(3), 383–405. · doi:10.1111/j.1540-5915.2008.00197.x
[29] Johnson, M. E. (2006). Dual sourcing strategies: operational hedging and outsourcing to reduce risk in low-cost countries. In C.-E. Lee & H. S. Lee (Eds.), Supply chain excellence in emerging economies. Berlin: Springer.
[30] Jones, P. C., Lowe, T. J., Traub, R. D., & Kegler, G. (2001). Matching supply and demand: the value of a second chance in producing hybrid seed corn. Manufacturing & Service Operations Management, 3(2), 122–137. · doi:10.1287/msom.3.2.122.9992
[31] Kouvelis, P., & Milner, J. (2002). Supply chain capacity and outsourcing decisions: the dynamic interplay of demand and supply uncertainty. IIE Transactions, 34, 717–728.
[32] Meixell, M. J., & Gargeya, V. B. (2005). Global supply chain design: a literature review and critique. Transportation Research Part E, 41, 531–550. · doi:10.1016/j.tre.2005.06.003
[33] Liu, Z., & Nagurney, A. (2009). An integrated electric power supply chain and fuel market network framework: theoretical modeling with empirical analysis for New England. Naval Research Logistics, 56(7), 600–624. · Zbl 1187.91143 · doi:10.1002/nav.20363
[34] Liu, Z., & Nagurney, A. (2011). Supply chain outsourcing under exchange rate risk and competition. Omega, 39, 539–549. · doi:10.1016/j.omega.2010.11.003
[35] Lee, H., Jeong, C., & Moon, C. (2002). Advanced planning and scheduling with outsourcing in manufacturing supply chain. Computers & Industrial Engineering, 43, 351–374. · doi:10.1016/S0360-8352(02)00079-7
[36] Nagurney, A. (1999). Network economics: a variational inequality approach. Dordrecht: Kluwer Academic Publishers. · Zbl 0873.90015
[37] Nagurney, A. (2006). Supply chain network economics: dynamics of prices, flows, and profits. Cheltenham: Elgar Publishing.
[38] Nagurney, A., Cruz, J. M., Dong, J., & Zhang, D. (2005). Supply chain networks, electronic commerce, and supply side and demand side risk. European Journal of Operational Research, 26, 120–142. · Zbl 1132.91344 · doi:10.1016/j.ejor.2003.11.007
[39] Nagurney, A., & Ke, K. (2006). Financial networks with intermediation: risk management with variable weights. European Journal of Operational Research, 172, 40–63. · Zbl 1107.91305 · doi:10.1016/j.ejor.2004.09.035
[40] Nagurney, A., Qiang, Q., & Min, Y. (2011). Supply chain network design for critical needs with outsourcing. Papers in Regional Science, 90, 123–142.
[41] Nagurney, A., & Toyasaki, F. (2005). Reverse supply chain management and electronic waste recycling: a multitiered network equilibrium framework for e-cycling. Transportation Research. Part E, Logistics and Transportation Review, 41, 1–28. · doi:10.1016/j.tre.2003.12.001
[42] Nagurney, A., & Yu, M. (2011a). Sustainable fashion supply chain management under oligopolistic competition and brand differentiation. International Journal of Production Economics, in press.
[43] Nagurney, A., & Yu, M. (2011b). Fashion supply chain management through cost and time minimization from a network perspective. In T.-M. Choi (Ed.), Fashion supply chain management: industry and business analysis (pp. 1–20). Hershey: IGI Publishing.
[44] Nash, J. F. (1950). Equilibrium points in n-person games. In Proceedings of the National Academy of Sciences (vol. 36, pp. 48–49). · Zbl 0036.01104
[45] Nash, J. F. (1951). Noncooperative games. Annals of Mathematics, 54, 286–298. · Zbl 0045.08202 · doi:10.2307/1969529
[46] Nembhard, H. B., Shi, L., & Aktan, M. (2005). A real-options-based analysis for supply chain decisions. IIE Transactions, 37, 945–956. · doi:10.1080/07408170591008073
[47] Petruzzi, N. C., & Dada, M. (2001). Information and inventory recourse for a two-market, price-setting retailer. Manufacturing & Service Operations Management, 3(3), 242–263. · doi:10.1287/msom.3.3.242.9888
[48] Ross, S., Westerfield, R., & Jordan, B. (2009). Fundamentals of corporate finance (9th edn.). McGraw-Hill: Irwin.
[49] Sen, A. (2008). The U.S. fashion industry: a supply chain review. International Journal of Production Economics, 114(2), 571–593. · doi:10.1016/j.ijpe.2007.05.022
[50] Shapiro, A., Dentcheva, D., & Ruszczynski, A. (2009). Lectures on stochastic programming: modeling and theory. Society for industrial and applied mathematics. Philadelphia. http://www.isye.gatech.edu/people/faculty/Alex_Shapiro/SPbook.pdf . Accessed 20 April 2011.
[51] Suri, R. (1998). Quick response manufacturing: a company wide approach to reducing lead times. Portland: Productivity Press.
[52] The Economist Intelligence Unit (2009). Managing supply-chain risk for reward.
[53] Upton, D. M. (1995). Flexibility as process mobility: the management of plant capabilities for quick response manufacturing. Journal of Operations Management, 12, 205–224. · doi:10.1016/0272-6963(95)00004-C
[54] Walker, J. (1999). A model for determining price markdowns of seasonal merchandise. The Journal of Product & Brand Management, 8(4), 352–361. · doi:10.1108/10610429910284328
[55] Wu, F., Li, Z., Chu, L. K., Sculli, D., & Gao, K. (2009). An approach to the valuation and decision of ERP investment projects based on real options. Annals of Operations Research, 168(1), 181–203. · Zbl 1179.90115 · doi:10.1007/s10479-008-0365-7
[56] Yang, S., Yang, J., & Abdel-Malek, L. (2007). Sourcing with random yields and stochastic demand: a newsvendor approach. Computers & Operations Research, 34, 3682–3690. · Zbl 1127.90067 · doi:10.1016/j.cor.2006.01.015
[57] Yang, P., & Wee, H. (2001). A quick response production strategy to market demand. Production Planning & Control, 12(4), 326–334. · doi:10.1080/09537280152004941
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.