×

zbMATH — the first resource for mathematics

Lattice Boltzmann method for the simulation of viscoelastic fluid flows. (English) Zbl 1274.76283
Summary: The simulation of viscoelastic fluids is a challenging task from the theoretical and numerical points of view. This class of fluids has been extensively studied with the help of classical numerical methods. In this paper we propose a new approach based on the lattice Boltzmann method in order to simulate linear and non-linear viscoelastic fluids and in particular those described by the Oldroyd-B and FENE-P constitutive equations. We study the accuracy and stability of our model on three different benchmarks: the 3D Taylor-Green vortex decay, the simplified 2D four-rolls mill, and the 2D Poiseuille flow. To our knowledge, the methodology described in this work is a first attempt for the simulation of non-trivial flows of viscoelastic fluids using the lattice Boltzmann method to discretize the constitutive and conservation equations.

MSC:
76M28 Particle methods and lattice-gas methods
76A10 Viscoelastic fluids
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Wolf-Gladrow, D. A.: Lattice-gas cellular automata and lattice Boltzmann models: an introduction, (2000) · Zbl 0999.82054
[2] Succi, S.: The lattice Boltzmann equation for fluid dynamics and beyond, (2001) · Zbl 0990.76001
[3] Chen, S.; Doolen, G. D.: Lattice Boltzmann method for fluid flows, Ann. rev. Fluid mech. 30, 329-364 (1998) · Zbl 1398.76180
[4] Shan, X.; Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. rev. E 47, 1815-1819 (1993)
[5] Reis, T.; Phillips, T. N.: Lattice Boltzmann model for simulating immiscible two-phase flows, J. phys. A: math. Theor. 40, No. 14, 4033-4053 (2007) · Zbl 1168.76360
[6] Kehrwald, D.: Lattice Boltzmann simulation of shear-thinning fluids, J. stat. Phys. 121, No. 15, 223-237 (2005) · Zbl 1085.82009
[7] Malaspinas, O.; Courbebaisse, G.; Deville, M. O.: Simulation of generalized Newtonian fluids with the lattice Boltzmann method, Int. J. Of mod. Phys. C 18, 1939-1949 (2007) · Zbl 1151.82019
[8] Vikhansky, A.: Lattice-Boltzmann method for yield-stress liquids, J. non-Newtonian fluid mech. 155, No. 3, 95-100 (2008) · Zbl 1274.76285
[9] Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids, kinetic theory (Dynamics of polymer liquids, vol. 2), (1987)
[10] Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids, fluid mechanics (Dynamics of polymer liquids, vol. 1), (1987)
[11] Larson, R. G.: The structure and rheology of complex fluids, (1998)
[12] Oldroyd, J. G.: On the formulation of rheological equations of state, Proc. R. Soc. London, ser. A 200, 523-541 (1950) · Zbl 1157.76305
[13] Peterlin, A.: Streaming birefringence of soft linear macromolecules with finite chain length, Polymer 2, 257-264 (1961)
[14] Tomé, M.; Grossi, L.; Castelo, A.; Cuminato, J.; Mckee, S.; Walters, K.: Die-swell, splashing drop and a numerical technique for solving the Oldroyd-B model for axisymmetric free surface flows, J. non-Newtonian fluid mech. 141, No. 2 – 3, 148-166 (2007) · Zbl 1195.76117
[15] Vaithianathan, T.; Robert, A.; Brasseur, J.; Collins, L.: An improved algorithm for simulating three-dimensional, viscoelastic turbulence, J. non-Newtonian fluid mech. 140, No. 1, 3-22 (2006) · Zbl 1143.76349
[16] Oliveira, P.: Method for time-dependent simulations of viscoelastic flows: vortex shedding behind cylinder, J. non-Newtonian fluid mech. 101, 113-137 (2001) · Zbl 1098.76583
[17] Purnode, B.; Crochet, M.: Polymer solution characterization with the FENE-P model, J. non-Newtonian fluid mech. 77, 1-20 (1998) · Zbl 0955.76005
[18] Chauvière, C.; Owens, R.: How accurate is your solution? error indicators for viscoelastic flow calculations, J. non-Newtonian fluid mech. 95, 1-33 (2000) · Zbl 1012.76066
[19] N. Fiétier, Numerical simulation of viscoelastic fluid flows by spectral element methods and time-dependent algorithms, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, http://library.epfl.ch/theses/?nr=2631, 2002.
[20] Qian, Y. -H.; Deng, Y. -F.: A lattice BGK model for viscoelastic media, Phys. rev. Lett. 79, No. 14, 2742-2745 (1997)
[21] Ispolatov, I.; Grant, M.: Lattice Boltzmann method for viscoelastic fluids, Phys. rev. E 65, No. 5, 056704 (2002)
[22] Giraud, L.; D’humières, D.; Lallemand, P.: A lattice-Boltzmann model for visco-elasticity, Int. J. Mod. phys. C 8, 805-815 (1997)
[23] Giraud, L.; D’humières, D.; Lallemand, P.: A lattice Boltzmann model for Jeffreys viscoelastic fluid, Europhys. lett. 42, No. 6, 625-630 (1998)
[24] Lallemand, P.; D’humières, D.; Luo, L. -S.; Rubinstein, R.: Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids, Phys. rev. E 67, No. 2, 021203 (2003)
[25] Onishi, J.; Chen, Y.; Ohashi, H.: A lattice Boltzmann model for polymeric liquids, Prog. comp. Fluid dyn. 5, 75-84 (2005)
[26] Onishi, J.; Chen, Y.; Ohashi, H.: Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method, Physica A 362, No. 1, 84-92 (2006)
[27] Denniston, C.; Orlandini, E.; Yeomans, J. M.: Lattice Boltzmann simulations of liquid crystal hydrodynamics, Phys. rev. E 63, No. 5, 056702 (2001) · Zbl 1205.76214
[28] Marenduzzo, D.; Orlandini, E.; Cates, M. E.; Yeomans, J. M.: Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations, Phys. rev. E 76, 031921 (2007) · Zbl 1145.76039
[29] Marenduzzo, D.; Orlandini, E.; Cates, M. E.; Yeomans, J. M.: Lattice Boltzmann simulations of spontaneous flow in active liquid crystals: the role of boundary conditions, J. non-Newtonian fluid mech. 149, 56-62 (2008) · Zbl 1145.76039
[30] B. Thomases, M. Shelley, Emergence of singular structures in Oldroyd-B fluids, Phys. Fluids 19 (10) 103103, doi: 10.1063/1.2783426. · Zbl 1182.76758
[31] Fouxon, A.; Lebedev, V.: Spectra of turbulence in dilute polymer solutions, Phys. fluids 15, No. 7, 2060-2072 (2003) · Zbl 1186.76175
[32] Bhatnagar, P. L.; Gross, E. P.; Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys. rev. 94, No. 3, 511-525 (1954) · Zbl 0055.23609
[33] Guo, Z.; Zheng, C.; Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. rev. E 65, 046308 (2002) · Zbl 1244.76102
[34] Chapman, S.; Cowling, T. G.: The mathematical theory of nonuniform gases, (1960) · Zbl 0098.39702
[35] O. Malaspinas, Lattice Boltzmann method for the simulation of viscoelastic fluid flows, PhD dissertation, EPFL, Lausanne, Switzerland, http://library.epfl.ch/theses/?nr=4505, 2009.
[36] Shan, X.; Yuan, X. -F.; Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier – Stokes equation, J. fluid mech. 550, 413-441 (2006) · Zbl 1097.76061
[37] Guo, Z.; Shi, B.; Zheng, C.: A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. meth. Fluids 39, 325-342 (2002) · Zbl 1014.76071
[38] El-Kareh, A. W.; Leal, L. G.: Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion, J. non-Newtonian fluid mech. 33, No. 3, 257-287 (1989) · Zbl 0679.76004
[39] Sureshkumar, R.; Beris, A.: Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows, J. non-Newtonian fluid mech. 60, 53-80 (1995)
[40] Housiadas, K.; Beris, A.: An efficient fully implicit spectral scheme for DNS of turbulent viscoelastic channel flow, J. non-Newtonian fluid mech. 122, 243-262 (2004) · Zbl 1143.76330
[41] Skordos, P. A.: Initial and boundary conditions for the lattice Boltzmann method, Phys. rev. E 48, 4823-4842 (1993)
[42] Inamuro, T.; Yoshina, M.; Ogino, F.: A non-slip boundary condition for lattice Boltzmann simulations, Phys. fluids 7, 2928-2930 (1995) · Zbl 1027.76631
[43] Latt, J.; Chopard, B.: Lattice Boltzmann method with regularized non-equilibrium distribution functions, Math. comp. Sim. 72, 165-168 (2006) · Zbl 1102.76056
[44] Latt, J.; Chopard, B.; Malaspinas, O.; Deville, M.; Michler, A.: Straight velocity boundaries in the lattice Boltzmann method, Phys. rev. E 77, No. 5, 056703 (2008)
[45] Zou, Q.; He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. fluids 9, 1592-1598 (1997) · Zbl 1185.76873
[46] Tomé, M.; Mangiavacchi, N.; Cuminato, J.; Castelo, A.; Mckee, S.: A finite difference technique for simulating unsteady viscoelastic free surface flows, J. non-Newtonian fluid mech. 106, 61-106 (2002) · Zbl 1015.76060
[47] Fattal, R.; Kupferman, R.: Time-dependent simulation of viscoelastic flows at high weissenberg number using the log-conformation representation, J. non-Newtonian fluid mech. 126, 23-37 (2005) · Zbl 1099.76044
[48] C. Boeckle, On the origin of numerical instabilities in the simulations of viscoelastic fluid flows, Master’s thesis, EPFL, Switzerland, 2009.
[49] Brachet, M. E.; Meiron, D. I.; Orszag, S. A.; Nickel, B. G.; Morf, R. H.; Frisch, U.: Small-scale structure or the Taylor – Green vortex, J. fluid mech. 120, 411-452 (1983) · Zbl 0517.76033
[50] Mei, R.; Luo, L. -S.; Lallemand, P.; D’humières, D.: Consistent initial conditions for lattice Boltzmann simulations, Comp. fluids 35, 855-862 (2006) · Zbl 1177.76319
[51] J. Latt, Hydrodynamic limit of lattice Boltzmann equations, PhD dissertation, University of Geneva, Geneva, Switzerland, http://www.unige.ch/cyberdocuments/theses2007/LattJ/meta.html, 2007.
[52] Hernández-Ortiz, J. P.; De Pablo, J. J.; Graham, M. D.; D’humières, D.: Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry, Phys. rev. Lett. 98, No. 14, 140602 (2006)
[53] Izmitli, A.; Schwartz, D. C.; Graham, M. D.; De Pablo, J. J.: The effect of hydrodynamic interactions on the dynamics of DNA translocation through pores, J. chem. Phys. 128, No. 8, 085102 (2008)
[54] Berti, S.; Bistagnino, A.; Boffetta, G.; Celani, A.; Musacchio, S.: Two-dimensional elastic turbulence, Phys. rev. E 77, No. 5, 055306 (2008)
[55] Huang, K.: Statistical mechanics, (1987) · Zbl 1041.82500
[56] Dellar, P. J.: Bulk and shear viscosities in lattice Boltzmann equations, Phys. rev. E 64, No. 3, 031203 (2001)
[57] Chopard, B.; Falcone, J. -L.; Latt, J.: The lattice Boltzmann advection-diffusion model revisited, Eur. phys. J. 171, 245-249 (2009)
[58] He, X.; Shan, X.; Doolen, G. D.: Discrete Boltzmann equation model for non-ideal gases, Phys. rev. E 57, No. 1, R13-R16 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.