×

zbMATH — the first resource for mathematics

Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. (English) Zbl 1274.76085
Summary: Analytical solutions are presented for the flow of viscoelastic fluids in micron sized ducts, namely between parallel plates and pipes under the combined influence of electrokinetic and pressure forces using the Debye-Hückel approximation, including the limit case of pure electro-osmotic flow. The viscoelastic fluids used are described by the simplified Phan-Thien-Tanner model (sPTT), with linear kernel for the stress coefficient function, and zero second normal stress difference, and the FENE-P model, based on the kinetic theory for finitely extensible dumbbells with a Peterlin approximation for the average spring force. The solution is non-linear with a significant contribution arising from the coupling between the electric and pressure potentials. This term acts as a drag reducer and a drag increaser under favorable and adverse pressure gradients, respectively and contrasts with the Newtonian flow case, for which it does not exist, demonstrating that the superposition principle valid for Newtonian fluids no longer applies when non-linear viscoelastic fluid models are considered. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcing on the fluid velocity distribution and fluid stresses are also discussed. The analysis of the streaming potential is also included.

MSC:
76A10 Viscoelastic fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Lamb, H.: Hydrodynamics, (1932) · JFM 58.1298.04
[2] Skelland, A. H. P.: Non-Newtonian flow and heat transfer, (1967)
[3] Phan-Thien, N.; Tanner, R. I.: New constitutive equation derived from network theory, J. non-Newtonian fluid mech. 2, 353-365 (1977) · Zbl 0361.76011
[4] Phan-Thien, N.: A non-linear network viscoelastic model, J. rheol. 22, 259-283 (1978) · Zbl 0391.76010
[5] Oliveira, P. J.; Pinho, F. T.: Analytical solution for fully developed channel and pipe flow of phan-thien – tanner fluids, J. non-Newtonian fluid mech. 387, 271-280 (1999) · Zbl 0938.76004
[6] Pinho, F. T.; Oliveira, P. J.: Axial annular flow of a nonlinear viscoelastic fluid — an analytical solution, J. non-Newtonian fluid mech. 93, 325-337 (2000) · Zbl 0990.76004
[7] Alves, M. A.; Pinho, P. J.; Oliveira, F. T.: Study of steady pipe and channel flows of a single-mode phan thien – tanner fluid, J. non-Newtonian fluid mech. 101, 55-76 (2001) · Zbl 1003.76005
[8] Cruz, D. O. A.; Pinho, F. T.: Skewed Poiseuille-Couette flows of sptt fluids in concentric annuli and channels, J. non-Newtonian fluid mech. 121, 1-14 (2004) · Zbl 1143.76364
[9] Mirzazadeh, M.; Escudier, M. P.; Rashidi, F.; Hashemabadi, S. H.: Analytical solution of purely tangential flow for PTT viscoelastic fluid through concentric annulus, J. non-Newtonian fluid mech. 129, 88-97 (2005) · Zbl 1195.76099
[10] Bird, R. B.; Dotson, P. J.; Johnson, N. L.: Polymer solution rheology based on a finitely extensible bead-spring chain model, J. non-Newtonian fluid mech. 7, 213-235 (1980) · Zbl 0432.76012
[11] Oliveira, P. J.: An exact solution for tube and slit flow of a FENE-P fluid, Acta mech. 158, 157-167 (2002) · Zbl 1064.76011
[12] Cruz, D. O. A.; Pinho, F. T.; Oliveira, P. J.: Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution, J. non-Newtonian fluid mech. 132, 28-35 (2005) · Zbl 1195.76086
[13] Cruz, D. O. A.; Pinho, F. T.: Fully-developed pipe and planar flows of multimode viscoelastic fluids, J. non-Newtonian fluid mech. 141, 85-98 (2007) · Zbl 1195.76085
[14] Schleiniger, G.; Weinacht, R. J.: Steady Poiseuille flows for a giesekus fluid, J. non-Newtonian fluid mech. 40, 79-102 (1991) · Zbl 0726.76014
[15] Van Schaftingen, J. J.; Crochet, M. J.: Analytical and numerical solution of the Poiseuille flow of a Johnson – Segalman fluid, J. non-Newtonian fluid mech. 18, 335-351 (1985) · Zbl 0581.76012
[16] Fyrillas, M. M.; Georgiou, G. C.; Vlassopoulos, D.: Time dependent plane Poiseuille flow of a Johnson – Segalman fluid, J. non-Newtonian fluid mech. 82, 105-123 (1999) · Zbl 0949.76004
[17] Stone, H. A.; Stroock, A. D.; Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. rev. Fluid mech. 36, 381-411 (2004) · Zbl 1076.76076
[18] Jendrejack, R. M.; Dimalanta, E. T.; Schwartz, D. C.; Graham, M. D.; De Pablo, J. J.: DNA dynamics in a microchannel, Phys. rev. Lett. 91, 038102 (2003)
[19] Bruus, H.: Theoretical microfluidics, Oxford master series in condensed matter physics, (2008)
[20] F.F. Reuss, Sur un nouvel effet de l’électricité galvanique, Mémoires de la Societé Impériale des Naturalistes de Moscou 2 (1809) 327 – 337.
[21] H. Helmholtz, Über den Einfluß der elektrischen Grenzschichten bei galvanischer Spannung und der durch Wasserströmung erzeugten Potentialdifferenz, Ann. 7 (1879) 337.
[22] Von Smoluchowski, M.: Versuch einer mathematischen theorie der koagulationskinetic kolloid lösungen, Z. phys. Chem. 92, 129-135 (1917)
[23] Burgreen, D.; Nakache, F. R.: Electrokinetic flow in ultrafine capillary slits, J. phys. Chem. 68, 1084-1091 (1964)
[24] Rice, C. L.; Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary, J. phys. Chem. 69, 4017-4024 (1965)
[25] Levine, S.; Marriott, J. R.; Neale, G.; Epstein, N.: Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials, J. colloid interface sci. 52, 136 (1975)
[26] Dutta, P.; Beskok, A.: Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects, Anal. chem. 73, 1979-1986 (2001)
[27] Arulanandam, S.; Li, D.: Liquid transport in rectangular microchannels by electroosmotic pumping, Colloids surf. A. 161, 29-102 (2000)
[28] Wang, C.; Wong, T. N.; Yang, C.; Ooi, K. T.: Characterization of electro-osmotic flow in rectangular microchannels, Int. J. Heat mass transf. 50, 3115-3121 (2007) · Zbl 1116.76088
[29] Karniadakis, G.; Beskok, A.; Aluru, N.: Microflows and nanoflows. Fundamentals and simulation. Interdisciplinary applied mathematics series, vol. 29, (2005) · Zbl 1115.76003
[30] Das, S.; Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid, Anal. chim. Acta 559, 15-24 (2006)
[31] Chakraborty, S.: Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels, Anal. chim. Acta 605, 175-184 (2007)
[32] Berli, C. L. A.; Olivares, M. L.: Electrokinetic flow of non-Newtonian fluids in microchannels, J. colloid interface sci. 320, 582-589 (2008)
[33] S. Chakkraborty, Dynamics of capillary flow of blood into a microfluidic channel, Lab-on-a-chip 5, (2005) 421 – 430.
[34] Park, H. M.; Lee, W. M.: Helmholtz – Smoluchowski velocity for viscoelastic electroosmotic flows, J. colloid interface sci. 317, 631-636 (2008)
[35] Owens, R. G.: A new microstructure-based constitutive model for human blood, J. non-Newtonian fluid mech. 140, 57-70 (2006) · Zbl 1143.76344
[36] M. Moyers-Gonzalez, R.G. Owens, J. Fang, A non-homogeneous constitutive model for human blood. Part I: Model derivation and steady flow, J. Non-Newtonian Fluid Mech. 617 (2008) 327 – 354. · Zbl 1155.76064
[37] Vissink, A.; Waterman, H. A.; Gravermade, E. J.; Panders, A. K.; Vermey, A.: Rheological properties of saliva substitutes containing mucin, carboxymethyl cellulose or polyethylenoxide, J. oral pathol. Med. 13, 22-28 (1984)
[38] Thurston, G. B.; Greiling, H.: Viscoelastic properties of pathological synovial fluids for a wide range of oscillatory shear and frequencies, Rheol. acta 17, 433-445 (1978)
[39] Fam, H.; Bryant, J. T.; Konopoulou, M.: Rheological properties of synovial fluids, Biorheology 44, 59-74 (2007)
[40] Rodd, L. E.; Cooper-White, J. J.; Boger, D. V.; Mckinley, G. H.: Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries, J. non-Newtonian fluid mech. 143, 170-191 (2007)
[41] Yang, C.; Li, D.: Electrokinetic effect on pressure-driven liquid flows in rectangular microchannels, J. colloid interface sci. 194, 95-107 (1997)
[42] Mala, G. M.; Li, D.; Dale, J. D.: Heat transfer and fluid flow in microchannels, Int. J. Heat mass transfer 40, 3079-3088 (1997) · Zbl 0925.76805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.