×

zbMATH — the first resource for mathematics

Laminar flow of power-law fluids past a rotating cylinder. (English) Zbl 1274.76053
Summary: In this work, the continuity and momentum equations have been solved numerically to investigate the flow of power-law fluids over a rotating cylinder. In particular, consideration has been given to the prediction of drag and lift coefficients as functions of the pertinent governing dimensionless parameters, namely, power-law index (\(1\geq n \geq 0.2\)), dimensionless rotational velocity (\(0\leq \alpha \leq 6)\) and the Reynolds number (\(0.1\leq Re \leq 40\)). Over the range of Reynolds number, the flow is known to be steady. Detailed streamline and vorticity contours adjacent to the rotating cylinder and surface pressure profiles provide further insights into the nature of flow. Finally, the paper is concluded by comparing the present numerical results with the scant experimental data on velocity profiles in the vicinity of a rotating cylinder available in the literature. The correspondence is seen to be excellent for Newtonian and inelastic fluids.

MSC:
76A05 Non-Newtonian fluids
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Zdravkovich, M. M.: Flow around circular cylinders, vol. 1: fundamentals, (1997) · Zbl 0882.76004
[2] Zdravkovich, M. M.: Flow around circular cylinders, vol. 2: applications, (2003) · Zbl 0882.76004
[3] Williamson, C. H. K.: Vortex dynamics in the cylinder wake, Annu. rev. Fluid mech. 28, 477-539 (1996)
[4] Coutanceau, M.; Defaye, J. R.: Circular cylinder wake configuration: a flow visualization survey, Appl. mech. Rev. 44, 255-305 (1991)
[5] Sumer, B. M.; Fredsoe, J.: Hydrodynamics around cylindrical structures, (2006) · Zbl 1153.76003
[6] Paramane, S. B.; Sharma, A.: Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime, Int. J. Heat mass transfer 52, 3205-3216 (2009) · Zbl 1167.80357
[7] Chhabra, R. P.; Richardson, J. F.: Non-Newtonian flow and applied rheology, (2008)
[8] Stojkovic, D.; Breuer, M.; Durst, F.: Effect of high rotation rates on the laminar flow around a circular cylinder, Phys. fluids 14, 3160-3178 (2002) · Zbl 1185.76357
[9] Chen, Y. -M.; Ou, Y. -R.; Pearlstein, A. J.: Development of the wake behind a circular cylinder impulsively started into rotary and rectilinear motion, J. fluid mech. 253, 449-484 (1993) · Zbl 0809.76024
[10] Coutanceau, M.; Menard, C.: Influence of rotation on the near-wake development behind an impulsively started circular cylinder, J. fluid mech. 158, 399-446 (1985)
[11] Badr, H. M.; Dennis, S. C. R.: Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder, J. fluid mech. 158, 447-488 (1985) · Zbl 0582.76035
[12] Chou, M. -H.: Numerical study of vortex shedding from a rotating cylinder immersed in a uniform flow field, Int. J. Num. methods fluids 32, 545-567 (2000) · Zbl 0981.76063
[13] Hu, G.; Sun, D.; Yin, X.; Tong, B.: Hopf bifurcation in wakes behind a rotating and translating circular cylinder, Phys. fluids 8, 1972-1974 (1996) · Zbl 1027.76554
[14] Kang, S.; Choi, H.; Lee, S.: Laminar flow past a rotating circular cylinder, Phys. fluids 11, 3312-3321 (1999) · Zbl 1149.76423
[15] Badr, H. M.; Dennis, S. C. R.; Young, P. J. S.: Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers, Comp. fluids 4, 579-609 (1989) · Zbl 0673.76117
[16] Kendoush, A. A.: An approximate solution of the convection heat transfer from an isothermal rotating cylinder, Int. J. Heat fluid flow 17, 439-441 (1996)
[17] Patnana, V. K.; Bharti, R. P.; Chhabra, R. P.: Two dimensional unsteady flow of power-law fluid over a cylinder, Chem. eng. Sci. 64, 2978-2999 (2009)
[18] Patnana, V. K.; Bharti, R. P.; Chhabra, R. P.: Two dimensional unsteady forced convection heat transfer in power-law fluids from a cylinder, Int. J. Heat mass transfer 53, 4152-4167 (2010) · Zbl 1194.80060
[19] Tanner, R. I.: Stokes paradox for power-law flow around a cylinder, J. non-newt. Fluid mech. 50, 217-224 (1993) · Zbl 0794.76005
[20] Whitney, M. J.; Rodin, G. J.: Force – velocity relationship for rigid bodies translating through unbounded shear-thinning power-law fluids, Int. J. Non-linear mech. 36, 947-953 (2001) · Zbl 1345.74036
[21] Chhabra, R. P.; Soares, A. A.; Ferreira, J. M.: Steady non-Newtonian flow past a circular cylinder: a numerical study, Acta mech. 172, 1-16 (2004) · Zbl 1065.76013
[22] Soares, A. A.; Ferreira, J. M.; Chhabra, R. P.: Flow and forced convection heat transfer in cross flow of non-Newtonian fluids over a circular cylinder, Ind. eng. Chem. res. 44, 5815-5827 (2005)
[23] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Steady flow of power-law fluids across a circular cylinder, Can. J. Chem. eng. 84, 406-421 (2006)
[24] Chhabra, R. P.: Bubbles, drops and particles in non-Newtonian fluids, (2006)
[25] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Steady forced convection heat transfer from a heated circular cylinder to power-law fluids, Int. J. Heat mass transfer 50, 977-990 (2007) · Zbl 1124.80308
[26] Srinivas, A. T.; Bharti, R. P.; Chhabra, R. P.: Mixed convection heat transfer from a cylinder in power-law fluids: effect of aiding buoyancy, Ind. eng. Chem. res. 48, 9735-9754 (2009)
[27] Soares, A. A.; Anacleto, J.; Caramelo, L.; Ferreira, J. M.; Chhabra, R. P.: Mixed convection from a circular cylinder to power-law fluids, Ind. eng. Chem. res. 48, 8219-8231 (2009) · Zbl 1197.80028
[28] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Two-dimensional steady Poiseuille flow of power-law fluids across a circular cylinder in a plane confined channel: wall effect and drag coefficient, Ind. eng. Chem. res. 46, 3820-3840 (2007)
[29] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Effect of blockage on heat transfer from a cylinder to power-law liquids, Chem. eng. Sci. 62, 4729-4741 (2007) · Zbl 1124.80308
[30] Dhiman, A. K.; Chhabra, R. P.; Eswaran, V.: Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of PĂ©clet number, Int. J. Heat mass transfer 48, 4598-4614 (2005) · Zbl 1189.76112
[31] Dhiman, A. K.; Chhabra, R. P.; Eswaran, V.: Steady flow of power-law fluids across a square cylinder, Chem. eng. Res. des. 84, 300-310 (2006) · Zbl 1145.76007
[32] Sivakumar, P.; Bharti, R. P.; Chhabra, R. P.: Steady flow of power-law fluids across an unconfined elliptical cylinder, Chem. eng. Sci. 62, 1682-1702 (2007)
[33] Bharti, R. P.; Sivakumar, P.; Chhabra, R. P.: Forced convection heat transfer from an elliptic cylinder to power-law fluids, Int. J. Heat mass transfer 51, 1838-1853 (2008) · Zbl 1140.80311
[34] Sahu, A. K.; Chhabra, R. P.; Eswaran, V.: Two dimensional laminar flow of a power-law fluid across a square cylinder, J. non-Newtonian fluid mech. 165, 752-763 (2010) · Zbl 1274.76064
[35] Townsend, P.: A numerical simulation of Newtonian and visco-elastic flow past stationary and rotating cylinders, J. non-Newtonian fluid mech. 6, 219-243 (1980) · Zbl 0421.76002
[36] Christiansen, R. L.: A laser-Doppler anemometry study of visco-elastic flow past a rotating cylinder, Ind. eng. Chem. fundam. 24, 403-408 (1985)
[37] R.L. Christiansen, PhD Thesis, University of Wisconsin, Madison, WI, 1980.
[38] Roache, P. J.; Perspective:: A method for uniform reporting of grid refinement studies, J. fluids eng. 116, 405-413 (1994)
[39] Ghia, U.; Ghia, K. N.; Shin, C. T.: High-re solutions for incompressible flow using the Navier – Stokes equations and a multigrid method, J. comp. Phys. 48, 387-411 (1982) · Zbl 0511.76031
[40] Neofytou, P.: A 3rd order upwind finite volume method for generalized Newtonian fluid flows, Adv. eng. Softw. 36, 664-680 (2005) · Zbl 1331.76080
[41] Sivakumar, P.; Bharti, R. P.; Chhabra, R. P.: Effect of power law index on critical parameters for power law fluid flow across an unconfined circular cylinder, Chem. eng. Sci. 61, 6035-6046 (2006)
[42] Chhabra, R. P.: Fluid mechanics and heat transfer with non-Newtonian liquids in mechanically agitated vessels, Adv. heat transfer 37, 77-178 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.