×

zbMATH — the first resource for mathematics

A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag. (English) Zbl 1274.74433
Summary: This paper describes a fixed grid algorithm to simulate the propagation of shallow hydraulic fractures, under plane strain or axisymmetric conditions. Because of the low stress environment that exists near a free surface, these fractures are generally characterized by a fluid front that lags behind the fracture edge. The simulation of shallow hydraulic fractures requires therefore the tracking of two distinct fronts. The proposed algorithm, which traces its roots to the one described by X. Zhang et al. [ibid. 29, No. 13, 1317–1340 (2005; Zbl 1140.74544)], advances the fracture by a constant step and computes the corresponding time required to reach this new fracture configuration as well as the matching location of the fluid front within the fixed grid. For any trial value of the time and of the front position, a non-linear system of algebraic equations is solved using either Newton’s method or a fixed point iteration scheme, with preconditioning. The nonlinear system is formulated by combining an implicit finite volume method for solving the lubrication equation and the displacement discontinuity method for solving the elasticity equation. The critical difference with the algorithm of Zhang et al. lays in the approach chosen to update the fluid front position. Rather than using a filling fraction method, the new algorithm adopts a velocity treatment of the fluid-front location that is akin to a one-dimensional implementation of a level set algorithm for front tracking. This conversion from a fluid volume to a fluid velocity-based approach to update the front position increases the degree of implicitness of the algorithm, which is responsible for a significant reduction of the CPU time by about two orders of magnitude.

MSC:
74R10 Brittle fracture
74L10 Soil and rock mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Khristianovic SA Zheltov YP Formation of vertical fractures by means of highly viscous fluids 1955 579 586
[2] Adachi, Computer simulation of hydraulic fractures, International Journal of Rock Mechanics and Mining Science 44 (5) pp 739– (2007) · doi:10.1016/j.ijrmms.2006.11.006
[3] Murdoch, Forms of hydraulic fractures in shallow fine-grained formations, Journal of Geotechnical and Geoenvironmental Engineering 128 (6) pp 479– (2002) · doi:10.1061/(ASCE)1090-0241(2002)128:6(479)
[4] Murdoch, Mechanical analysis of idealized shallow hydraulic fracture, Journal of Geotechnical and Geoenvironmental Engineering 128 (6) pp 488– (2002) · doi:10.1061/(ASCE)1090-0241(2002)128:6(488)
[5] Young, Rock Mechanics for Industry, Proceedings of 37th U.S. Rock Mechanics Symposium 1 pp 115– (1999)
[6] Jeffrey, Pacific Rocks 2000 pp 423– (2000)
[7] van As, Pacific Rocks 2000 pp 353– (2000)
[8] Abou-Sayed, Proceedings of the California Regional Meetings pp 129– (1989)
[9] Abou-Sayed AS Thompson TW Keckler K Safe injection pressures for disposing of liquid wastes: a case study for deep well injection (SPE/ISRM-28236) 769 776
[10] Bolzon, Direct assessment of structural resistance against pressurized fracture, International Journal for Numerical and Analytical Methods in Geomechanics 27 pp 353– (2003) · Zbl 1047.74523 · doi:10.1002/nag.276
[11] Penman, The failure of the Teton dam, Ground Engineering 10 (6) pp 18– (1977)
[12] Pollard, Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah. II, Tectonophysics 18 pp 311– (1973) · doi:10.1016/0040-1951(73)90051-6
[13] Pollard, On the mechanical interaction between a fluid-filled fracture and the earth’s surface, Tectonophysics 53 pp 27– (1979) · doi:10.1016/0040-1951(79)90353-6
[14] Corry, Laccoliths: Mechanics of Emplacement and Growth (1988) · doi:10.1130/SPE220-p1
[15] Fialko, On origin of near-axis volcanism and faulting at fast spreading mid-ocean ridges, Earth and Planetary Science Letters 190 pp 31– (2001) · doi:10.1016/S0012-821X(01)00376-4
[16] Zhang, Propagation of a penny-shaped hydraulic fracture parallel to the free-surface of an elastic half-space, International Journal of Fracture 115 pp 125– (2002) · doi:10.1023/A:1016345906315
[17] Bunger AP Near-surface hydraulic fracture 2005
[18] Zhang, Propagation of a hydraulic fracture parallel to a free surface, International Journal for Numerical and Analytical Methods in Geomechanics 29 (13) pp 1317– (2005) · Zbl 1140.74544 · doi:10.1002/nag.461
[19] Roper, Buoyancy-driven crack propagation from an over-pressured source, Journal of Fluid Mechanics 536 pp 79– (2005) · Zbl 1074.74052 · doi:10.1017/S0022112005004337
[20] Roper, Buoyancy-driven crack propagation: the limit of large fracture toughness, Journal of Fluid Mechanics 580 pp 359– (2007) · Zbl 1114.74052 · doi:10.1017/S0022112007005472
[21] Medlin, Laboratory experiments in fracture propagation, Society of Petroleum Engineers Journal pp 256– (1984) · doi:10.2118/10377-PA
[22] Rubin, Propagation of magma-filled cracks, Annual Review of Earth and Planetary Sciences 23 pp 287– (1995) · doi:10.1146/annurev.ea.23.050195.001443
[23] Bunger, GulfRock04 Conference (2004)
[24] Sher, Modeling the axially symmetric crack growth under blasting and hydrofracturing near free surface, Journal of Mining Science 44 (5) pp 473– (2008) · doi:10.1007/s10913-008-0052-8
[25] Paynter, The penny crack beneath the surface of a half-space: with application to the blister test, International Journal of Fracture 142 pp 173– (2006) · Zbl 1197.74125 · doi:10.1007/s10704-006-9042-5
[26] Garagash, The tip region of a fluid-driven fracture in an elastic medium, ASME Journal of Applied Mechanics 67 (1) pp 183– (2000) · Zbl 1110.74448 · doi:10.1115/1.321162
[27] Garagash, Propagation of a plane-strain hydraulic fracture with a fluid lag: Early-time solution, International Journal of Solids and Structures 43 pp 5811– (2006) · Zbl 1120.74752 · doi:10.1016/j.ijsolstr.2005.10.009
[28] Bunger, Early time solution for a penny-shaped hydraulic fracture, ASCE Journal of Engineering Mechanics 133 (5) pp 534– (2007) · doi:10.1061/(ASCE)0733-9399(2007)133:5(534)
[29] Detournay E Bunger AP Similarity solutions for a shallow hydraulic fracture 2006 57 62
[30] Peirce, An implicit level set method for modeling hydraulically driven fractures, Computer Methods in Applied Mechanics and Engineering 197 pp 2858– (2008) · Zbl 1194.74534 · doi:10.1016/j.cma.2008.01.013
[31] Bunger, Experimental validation of the tip asymptotics for a fluid-driven crack, Journal of the Mechanics and Physics of Solids 56 (11) pp 3101– (2008) · doi:10.1016/j.jmps.2008.08.006
[32] Garagash, Multiscale tip asymptotics for fluid-driven fracture, Journal of Fluid Mechanics (2010)
[33] Lecampion, An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag, Computer Methods in Applied Mechanics and Engineering 196 (49-52) pp 4863– (2007) · Zbl 1173.74383 · doi:10.1016/j.cma.2007.06.011
[34] Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (1999) · Zbl 0973.76003
[35] Crouch, Boundary Element Methods in Solid Mechanics (1983)
[36] Hills, Solid Mechanics and its Applications, in: Solution of Crack Problems. The Distributed Dislocation Technique (1996) · doi:10.1007/978-94-015-8648-1
[37] Johnson, Physical Processes in Geology (1970)
[38] Dyskin, Asymptotic analysis of crack interaction with free boundary, International Journal of Solids and Structures 37 (6) pp 857– (2000) · Zbl 1015.74050 · doi:10.1016/S0020-7683(99)00063-3
[39] Bunger, Asymptotic solution for a penny-shaped near-surface hydraulic fracture, Engineering Fracture Mechanics 72 (16) pp 2468– (2005) · doi:10.1016/j.engfracmech.2005.03.005
[40] Batchelor, An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[41] Detournay, Propagation regimes of fluid-driven fractures in impermeable rocks, International Journal of Geomechanics 4 (1) pp 1– (2004) · doi:10.1061/(ASCE)1532-3641(2004)4:1(35)
[42] Lin, Mathematics Applied to Deterministic Problems in the Natural Sciences (1988) · doi:10.1137/1.9781611971347
[43] Peirce, A dual mesh multigrid preconditioner for the efficient solution of hydraulically driven fracture problems, International Journal for Numerical Methods in Engineering 63 pp 1797– (2005) · Zbl 1138.74412 · doi:10.1002/nme.1330
[44] Peirce, Localized Jacobian ILU preconditioners for hydraulic fractures, International Journal for Numerical Methods in Engineering 65 (12) pp 1935– (2006) · Zbl 1112.74068 · doi:10.1002/nme.1528
[45] Ryder JA Napier JAL Error analysis and design of a large-scale tabular mining stress analyzer 1549 1555
[46] Sethian, Fast marching methods, SIAM Review 41 (2) pp 199– (1999) · Zbl 0926.65106 · doi:10.1137/S0036144598347059
[47] Gordeliy E Detournay E 2010 http://purl.umn.edu/57327
[48] Paynter, The effect of path cut on Somigliana ring dislocation elastic fields, International Journal of Solids and Structures 44 pp 6653– (2007) · Zbl 1166.74317 · doi:10.1016/j.ijsolstr.2007.03.001
[49] Paynter, The effect of path cut on Somigliana ring dislocations in a half-space, International Journal of Solids and Structures 46 pp 412– (2009) · Zbl 1168.74315 · doi:10.1016/j.ijsolstr.2008.09.001
[50] Korsunsky, The Somigliana ring dislocation revisited. 1. Papkovich potential solutions for dislocations in an infinite space, Journal of Elasticity 44 (2) pp 97– (1996) · Zbl 0889.73063 · doi:10.1007/BF00042472
[51] Korsunsky, The Somigliana ring dislocation revisited. 2. Solutions for dislocations in a half space and in one of two perfectly bonded dissimilar half spaces, Journal of Elasticity 44 (2) pp 115– (1996) · Zbl 0889.73063 · doi:10.1007/BF00042473
[52] Kolesnikova, Dislocation and disclination loops in the virtual-defect method, Physics of the Solid State 45 (9) pp 1706– (2003) · doi:10.1134/1.1611238
[53] Kolesnikova, Virtual circular dislocation-disclination loop technique in boundary value problems in the theory of defects, Journal of Applied Mechanics 71 (3) pp 409– (2004) · Zbl 1111.74485 · doi:10.1115/1.1757488
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.