×

zbMATH — the first resource for mathematics

Large-eddy simulation of spatial transition in plane channel flow. (English) Zbl 1273.76216
Summary: Spatial large-eddy simulations (LES) of forced transition in plane incompressible channel flow are presented and compared to temporal simulations. Using the fringe method, spectral Fourier discretization is employed also in the streamwise, spatially evolving flow direction. Various subgrid-scale (SGS) models are examined including the dynamic Smagorinsky model, high-pass filtered (HPF) eddy-viscosity models and the relaxation-term model (ADM-RT). The applicability of the fringe method in conjunction with SGS models is demonstrated. Good results are obtained even at rather low LES resolution at which a coarse-grid no-model calculation is inaccurate. The most accurate prediction of transitional flow structures is obtained using the ADM-RT model. For this model, a detailed comparison between spatial and temporal simulation results is given. A clear representation of the transitional flow structures by LES up to the multi-spike stage could be established. Our results also show that the SGS models behave similarly in temporal and spatial simulations, thus allowing us to perform SGS model testing with the more straightforward and inexpensive temporal approach. The same SGS models work well without any change also in the fully developed turbulent flow.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rempfer D., Annual Review of Fluid Mechanics 35 pp 229– (2003) · Zbl 1039.76025 · doi:10.1146/annurev.fluid.35.030602.113908
[2] Lesieur M., Annual Review of Fluid Mechanics 28 pp 45– (1996) · doi:10.1146/annurev.fl.28.010196.000401
[3] Sagaut P., Large Eddy Simulation for Incompressible Flows,, 3. ed. (2005) · Zbl 0964.76002
[4] Kleiser L., Annual Review of Fluid Mechanics 23 pp 495– (1991) · doi:10.1146/annurev.fl.23.010191.002431
[5] Germano M., Physics of Fluids A 3 pp 1760– (1991) · Zbl 0825.76334 · doi:10.1063/1.857955
[6] Schlatter P., International Journal of Heat Fluid Flow 25 pp 549– (2004) · doi:10.1016/j.ijheatfluidflow.2004.02.020
[7] Ducros F., Journal of Fluid Mechanics 326 pp 1– (1996) · Zbl 0917.76032 · doi:10.1017/S0022112096008221
[8] Schlatter P., Sixth IUTAM Symposium 2004 (Bangalore, India), in: Laminar-Turbulent Transition (2005)
[9] Sandham N. D., Journal of Fluid Mechanics 245 pp 319– (1992) · Zbl 0825.76312 · doi:10.1017/S002211209200048X
[10] Stolz S., Direct and Large-Eddy Simulation V pp 81– (2004)
[11] Smagorinsky J., Monthly Weather Review 91 pp 99– (1963) · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[12] Piomelli U., Physics of Fluids A 2 pp 257– (1990) · doi:10.1063/1.857774
[13] Voke P., Physics of Fluids 7 pp 2256– (1995) · Zbl 1025.76540 · doi:10.1063/1.868473
[14] Piomelli U., Computer Physics Communications 65 pp 224– (1991) · Zbl 0900.76079 · doi:10.1016/0010-4655(91)90175-K
[15] Lilly D. K., Physics of Fluids A 4 pp 633– (1992) · doi:10.1063/1.858280
[16] Stolz S., Physics of Fluids 17 pp 065103– (2005) · Zbl 1187.76501 · doi:10.1063/1.1923048
[17] Métais O., Journal of Fluid Mechanics 239 pp 157– (1992) · Zbl 0825.76272 · doi:10.1017/S0022112092004361
[18] Schlatter P., Journal of Turbulence 6 (2005)
[19] Stolz S., Physics of Fluids 13 pp 997– (2001) · Zbl 1184.76530 · doi:10.1063/1.1350896
[20] Schlatter P., Advances in Turbulence X pp 303– (2004)
[21] Vreman A. W., Physics of Fluids 15 pp L61– (2003) · Zbl 1186.76552 · doi:10.1063/1.1595102
[22] Hughes T. J.R., Computing and Visualization in Science 3 pp 47– (2000) · Zbl 0998.76040 · doi:10.1007/s007910050051
[23] Cerutti S., Journal of Fluid Mechanics 421 pp 307– (2000) · Zbl 0958.76507 · doi:10.1017/S0022112000001671
[24] Stolz S., Physics of Fluids 15 pp 2398– (2003) · Zbl 1186.76501 · doi:10.1063/1.1588637
[25] Schlatter P., Direct and Large-Eddy Simulation V pp 65– (2004)
[26] Schlatter P., PhD Thesis, in: Large-eddy simulation of transition and turbulence in wall-bounded shear flow (2005)
[27] Karamanos G. S., Journal of Computational Physics 163 pp 22– (2000) · Zbl 0984.76036 · doi:10.1006/jcph.2000.6552
[28] Gilbert, N. and Kleiser, L. Near-wall phenomena in transition to turbulence. Near-Wall Turbulence–1988 Zoran Zarić Memorial Conference. Edited by: Kline, S. J. and Afgan, N. H. pp.7–27. New York, USA: Hemisphere.
[29] Kleiser, L. and Schumann, U. Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flow. Proc. 3rd GAMM Conf. on Numerical Methods in Fluid Mechanics. Edited by: Hirschel, E. H. pp.165–173. Braunschweig, Germany: Vieweg. · Zbl 0463.76020
[30] Kleiser L., Spectral Methods for Partial Differential Equations pp 141– (1984)
[31] Wray A. A., Very low storage time-advancement schemes (1987)
[32] Bertolotti F. P., Journal of Fluid Mechanics 242 pp 441– (1992) · Zbl 0754.76029 · doi:10.1017/S0022112092002453
[33] Nordström J., SIAM Journal of Scientific Computing 20 pp 1365– (1999) · Zbl 0930.35015 · doi:10.1137/S1064827596310251
[34] Nishioka M., Journal of Fluid Mechanics 72 pp 731– (1975) · doi:10.1017/S0022112075003254
[35] Herbert T., Annual Review of Fluid Mechanics 20 pp 487– (1988) · doi:10.1146/annurev.fl.20.010188.002415
[36] Schlatter P., Journal of Computational Physics 206 pp 505– (2005) · Zbl 1120.76351 · doi:10.1016/j.jcp.2004.12.015
[37] Jeong J., Journal of Fluid Mechanics 285 pp 69– (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[38] Kachanov Y. S., Annual Review of Fluid Mechanics 26 pp 411– (1994) · doi:10.1146/annurev.fl.26.010194.002211
[39] Härtel C., Applied Scientific Research 51 pp 43– (1993) · doi:10.1007/BF01082512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.