×

zbMATH — the first resource for mathematics

RANS modelling of intermittent turbulent flows using adaptive mesh refinement methods. (English) Zbl 1273.76170
Summary: This paper investigates the modelling of intermittency in turbulent jet flows using the Reynolds-averaged Navier-Stokes flow field solutions, coupled to the solutions of the transported probability density function (PDF) equation for scalar variables, obtained using a finite-volume method combined with an adaptive mesh refinement algorithm applied in both physical and compositional space. The effects of intermittency, \(\gamma\), on the turbulent flow field are accommodated using a \(k\)-\(\epsilon\)-\(\gamma\) turbulence model as well as being applied in the mixing model embodied within the transported PDF equation. Different mixing models are also considered for use with the latter transport equation, including the linear mean square estimation and the Curl and Langevin approaches. Results are compared with the available experimental data on a jet flow with good agreement obtained.

MSC:
76F55 Statistical turbulence modeling
76M12 Finite volume methods applied to problems in fluid mechanics
Software:
GENMIX
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pope S. B., Amer. Inst. Aeronaut. (AIAA) J. 3 pp 279– (1978)
[2] DOI: 10.1017/S0022112092003422 · Zbl 0747.76057
[3] DOI: 10.1002/nme.2628 · Zbl 1176.80089
[4] DOI: 10.1016/0017-9310(81)90147-2 · Zbl 0487.76056
[5] DOI: 10.1063/1.865660 · Zbl 0609.76057
[6] Janicka J., Turbulent Shear Flows 4 pp 73– (1983)
[7] DOI: 10.1063/1.863653 · Zbl 0522.76054
[8] DOI: 10.1016/0021-9991(84)90073-1 · Zbl 0536.65071
[9] DOI: 10.1016/0021-9991(89)90035-1 · Zbl 0665.76070
[10] DOI: 10.1137/0915008 · Zbl 0793.65072
[11] DOI: 10.1016/0168-9274(95)00105-0 · Zbl 0856.65108
[12] Baum J. D., Amer. Inst. Aeronaut. Astronaut. (AIAA) J. pp 682– (1994)
[13] Spalding D. B., GENMIX: A General Computer Program for Two-Dimensional Parabolic Phenomena (1977)
[14] DOI: 10.1016/0360-1285(85)90002-4
[15] DOI: 10.1002/aic.690090207
[16] DOI: 10.1016/S0010-2180(98)00002-9
[17] DOI: 10.1515/jnet.1979.4.1.47 · Zbl 0422.76058
[18] DOI: 10.1063/1.857621 · Zbl 0703.76039
[19] DOI: 10.1063/1.862431 · Zbl 0401.76049
[20] Godunov S. K., Matematicheski Sbornik 47 pp 271– (1959)
[21] Falle S. A. E. G., MNRAS 250 pp 581– (1991)
[22] Schefer R. W., Amer. Inst. Aeronaut. Astronaut. (AIAA) J. 39 pp 64– (2001)
[23] Pope S. B., Amer. Inst. Aeronaut. Astronaut. (AIAA) J. 22 pp 896– (1984)
[24] DOI: 10.1016/j.compchemeng.2007.02.007
[25] Alvani R. F., Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer pp 911– (2003)
[26] DOI: 10.1016/0010-2180(83)90075-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.