×

zbMATH — the first resource for mathematics

Some dynamical features of the turbulent flow of a viscoelastic fluid for reduced drag. (English) Zbl 1273.76045
Summary: It is well known that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. In the present study, direct numerical simulations of turbulent channel flow of a viscoelastic fluid, at zero-shear friction Reynolds numbers up to of 1000, are analyzed. Both the mean and turbulent fields are studied, but with a primary focus on the turbulent stress and viscoelastic extra-stress (conformation tensor) fields in order to contrast the dynamics of each. An analysis of both the turbulent kinetic energy and the elastic energy budget is made, with emphasis on the interactive dynamics between the two fields.

MSC:
76A10 Viscoelastic fluids
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Toms B. A., Proceedings of the 1st International Congress of Rheology 2 pp 135– (1949)
[2] DOI: 10.1007/BF00864368 · Zbl 0866.76005 · doi:10.1007/BF00864368
[3] DOI: 10.1016/0377-0257(95)01388-7 · doi:10.1016/0377-0257(95)01388-7
[4] DOI: 10.1063/1.869229 · doi:10.1063/1.869229
[5] DOI: 10.1016/S0377-0257(98)00115-3 · Zbl 0960.76057 · doi:10.1016/S0377-0257(98)00115-3
[6] DOI: 10.1063/1.1589484 · Zbl 1186.76235 · doi:10.1063/1.1589484
[7] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052 · doi:10.1017/S0022112004000291
[8] DOI: 10.1063/1.1850920 · Zbl 1187.76219 · doi:10.1063/1.1850920
[9] DOI: 10.1063/1.1829751 · Zbl 1187.76127 · doi:10.1063/1.1829751
[10] DOI: 10.1017/S0022112006002321 · Zbl 1145.76027 · doi:10.1017/S0022112006002321
[11] DOI: 10.1016/j.jnnfm.2006.03.017 · Zbl 1143.76331 · doi:10.1016/j.jnnfm.2006.03.017
[12] DOI: 10.1016/j.jnnfm.2006.04.012 · Zbl 1195.76034 · doi:10.1016/j.jnnfm.2006.04.012
[13] DOI: 10.1016/j.jnnfm.2004.05.004 · Zbl 1115.76303 · doi:10.1016/j.jnnfm.2004.05.004
[14] DOI: 10.1007/s10494-008-9134-6 · Zbl 1257.76032 · doi:10.1007/s10494-008-9134-6
[15] DOI: 10.1016/j.jnnfm.2008.02.008 · Zbl 1293.76077 · doi:10.1016/j.jnnfm.2008.02.008
[16] DOI: 10.1016/j.jnnfm.2011.02.012 · Zbl 1282.76054 · doi:10.1016/j.jnnfm.2011.02.012
[17] DOI: 10.1063/1.3294574 · Zbl 1183.76516 · doi:10.1063/1.3294574
[18] DOI: 10.1146/annurev.fl.01.010169.002055 · doi:10.1146/annurev.fl.01.010169.002055
[19] DOI: 10.1209/0295-5075/2/7/005 · doi:10.1209/0295-5075/2/7/005
[20] De Gennes P. G., Physica 140 pp 9– (1986) · doi:10.1016/0378-4371(86)90200-1
[21] DOI: 10.1002/aic.690150324 · doi:10.1002/aic.690150324
[22] Joseph D.D., Fluid Dynamics of Viscoelastic Liquids (1990) · Zbl 0698.76002 · doi:10.1007/978-1-4612-4462-2
[23] DOI: 10.1063/1.1345882 · Zbl 1184.76137 · doi:10.1063/1.1345882
[24] DOI: 10.1017/S0022112003004610 · Zbl 1054.76041 · doi:10.1017/S0022112003004610
[25] DOI: 10.1017/S0022112003005597 · Zbl 1063.76579 · doi:10.1017/S0022112003005597
[26] DOI: 10.1103/PhysRevLett.92.244503 · doi:10.1103/PhysRevLett.92.244503
[27] DOI: 10.1103/PhysRevE.70.055301 · doi:10.1103/PhysRevE.70.055301
[28] DOI: 10.1103/PhysRevLett.95.194502 · doi:10.1103/PhysRevLett.95.194502
[29] DOI: 10.1002/aic.690210402 · doi:10.1002/aic.690210402
[30] DOI: 10.1017/S0022112099007818 · Zbl 0959.76005 · doi:10.1017/S0022112099007818
[31] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043 · doi:10.1146/annurev.fluid.40.111406.102156
[32] DOI: 10.1103/PhysRevE.82.066303 · doi:10.1103/PhysRevE.82.066303
[33] DOI: 10.1063/1.1689971 · Zbl 1186.76236 · doi:10.1063/1.1689971
[34] DOI: 10.1016/j.jnnfm.2006.03.018 · Zbl 1143.76349 · doi:10.1016/j.jnnfm.2006.03.018
[35] DOI: 10.1007/s003480050371 · doi:10.1007/s003480050371
[36] DOI: 10.1016/j.compfluid.2010.09.025 · Zbl 1452.76075 · doi:10.1016/j.compfluid.2010.09.025
[37] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[38] DOI: 10.1103/PhysRevE.71.016305 · doi:10.1103/PhysRevE.71.016305
[39] DOI: 10.1063/1.858852 · Zbl 0782.76046 · doi:10.1063/1.858852
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.