×

zbMATH — the first resource for mathematics

Starting solutions for oscillating motions of Oldroyd-B fluids in cylindrical domains. (English) Zbl 1273.76040
Summary: Exact solutions for some oscillating motions of an Oldroyd-B fluid due to an oscillating circular cylinder are established as Fourier-Bessel series in terms of some suitable eigenfunctions. These solutions, presented as sum of steady-state and transient solutions, reduce to the similar solutions for Maxwell, second grade and Newtonian fluids as limiting cases. They describe the motion of the fluid for some time after its initiation. After that time, when the transients disappear, the starting solutions tend to the steady-state solutions which are periodic in time and independent of initial conditions. Finally, the required times to attain the steady-state for cosine and sine oscillations of the boundary are obtained by graphical illustrations. These times decrease if the frequencies of the velocity of boundary increase.

MSC:
76A10 Viscoelastic fluids
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Stokes, G. G.: On the effect of the rotation of cylinders and spheres about their axis in increasing the logarithmic decrement of the arc of vibration, (1886)
[2] Casarella, M. J.; Laura, P. A.: Drag on oscillating rod with longitudinal and torsional motion, J. hydronautics 3, 180 (1969)
[3] Rajagopal, K. R.: Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid, Acta mech. 49, 281 (1983) · Zbl 0539.76005 · doi:10.1007/BF01236358
[4] Rajagopal, K. R.; Bhatnagar, R. K.: Exact solutions for some simple flows of an Oldroyd-B fluid, Acta mech. 113, 233 (1995) · Zbl 0858.76010 · doi:10.1007/BF01212645
[5] M. Khan, S. Asghar, T. Hayat, Oscillating flow of a Burgers’ fluid in a pipe, The Abdus Salam International Center for Theoretical Physics, IC/2005/071.
[6] Penton, R.: The transient for Stokes oscillating plane: a solution in terms of tabulated functions, J. fluid mech. 31, 819 (1968) · Zbl 0193.56302 · doi:10.1017/S0022112068000509
[7] Erdogan, M. E.: A note on an unsteady flow of a viscous fluid due to an oscillating plane wall, Int. J. Non-linear mech. 35, 1 (2000) · Zbl 1006.76028 · doi:10.1016/S0020-7462(99)00019-0
[8] Fetecau, C.; Fetecau, C.: Starting solutions for some unsteady unidirectional flows of a second grade fluid, Int. J. Eng. sci. 43, 781 (2005) · Zbl 1211.76032 · doi:10.1016/j.ijengsci.2004.12.009
[9] Hayat, T.; Siddiqui, A. M.; Asghar, S.: Some simple flows of an Oldroyd-B fluid, Int. J. Eng. sci. 39, 135 (2001) · Zbl 0986.76004
[10] Aksel, N.; Fetecau, C.; Scholle, M.: Starting solutions for some unsteady unidirectional flows of Oldroyd-B fluids, Zamp 57, 815 (2006) · Zbl 1101.76006 · doi:10.1007/s00033-006-0063-8
[11] Fetecau, C.; Fetecau, C.: Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder, Int. J. Eng. sci. 44, 788 (2006) · Zbl 1213.76014 · doi:10.1016/j.ijengsci.2006.04.010
[12] Vieru, D.; Akhtar, W.; Fetecau, C.; Fetecau, C.: Starting solutions for the oscillating motion of a Maxwell fluid in cylindrical domains, Meccanica 42, 573 (2007) · Zbl 1163.76321 · doi:10.1007/s11012-007-9081-7
[13] Rajagopal, K. R.: Mechanics of non-Newtonian fluids, (1993) · Zbl 0818.76003
[14] Rajagopal, K. R.; Srinivasa, A. R.: A thermodynamical frame-work for rate type fluid models, J. non-Newtonian fluid mech. 88, 207 (2000) · Zbl 0960.76005 · doi:10.1016/S0377-0257(99)00023-3
[15] Srivastava, P. N.: Non-steady helical flow of a visco-elastic liquid, Arch. mech. Stos. 18, 145 (1966)
[16] Wood, W. P.: Transient viscoelastic helical flows in pipes of circular and annular cross-section, J. non-Newtonian fluid mech. 100, 115 (2001) · Zbl 1014.76004 · doi:10.1016/S0377-0257(01)00130-6
[17] Asghar, S.; Khan, M.; Hayat, T.: Magnetohydrodynamic transient flows of a non-Newtonian fluid, Int. J. Non-linear mech. 40, 589 (2005) · Zbl 1343.76071
[18] Tan, W. C.; Masuoka, T.: Stokes first problem for an Oldroyd-B fluid in a porous half space, Phys. fluids 17, 023101 (2005) · Zbl 1187.76517 · doi:10.1063/1.1850409
[19] Hayat, T.; Hussain, M.; Khan, M.: Hall effect on flows of an Oldroyd-B fluid thorough porous medium for cylindrical geometries, Comput. math. Appl. 52, 269 (2006) · Zbl 1137.76063 · doi:10.1016/j.camwa.2006.08.018
[20] Fetecau, C.; Prasad, S. C.; Rajagopal, K. R.: A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid, Appl. math. Model. 31, 647 (2007) · Zbl 1287.76047
[21] Fetecau, C.: Analytical solutions for non-Newtonian fluid flows in pipe-like domains, Int. J. Non-linear mech. 39, 225 (2004) · Zbl 1287.76036
[22] Sneddon, I. N.: Functional analysis, (1955)
[23] Bandelli, R.; Rajagopal, K. R.: Start-up flows of second grade fluids in domains with one finite dimension, Int. J. Non-linear mech. 30, 817 (1995) · Zbl 0866.76004 · doi:10.1016/0020-7462(95)00035-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.