×

Dynamics of viscoelastic liquid filaments: low capillary number flows. (English) Zbl 1273.76035

From the summary: Many applications of viscoelastic free surface flows requiring formation of drops from small nozzles, e.g., ink-jet printing, micro-arraying, and atomization, involve predominantly extensional deformations of liquid filaments. The capillary number, which represents the ratio of viscous to surface tension forces, is small in such processes when drops of water-like liquids are formed. The dynamics of extensional deformations of viscoelastic liquids that are weakly strain hardening, i.e., liquids for which the growth in the extensional viscosity is small and bounded, are here modeled by the Giesekus, FENE-P, and FENE-CR constitutive relations and studied at low capillary numbers using full 2D numerical computations. A new computational algorithm using the general conformation tensor based constitutive equation to compute the time dependent viscoelastic free surface flows is presented. DEVSS-TG/SUPG mixed finite element method is used for the spatial discretization and a fully implicit second-order predictor-corrector scheme is used for the time integration. Inertia, capillarity, and viscoelasticity are incorporated in the computations and the free surface shapes are computed along with all the other field variables in a fully coupled way. Among the three models, Giesekus filaments show the most drastic thinning in the low capillary number regime. The dependence of the transient Trouton ratio on the capillary number in the Giesekus model is demonstrated. The elastic unloading near the end plates is investigated using both kinematic and energy analyses. The magnitude of elastic unloading, which increases with growing elasticity, is shown to be the largest for Giesekus filaments, thereby suggesting that necking and elastic unloading are related.

MSC:

76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] , Liquid film coating (1997)
[2] Basaran, O. A.: Small-scale free surface flows with breakup: drop formation and emerging applications, Aiche J. 48, 1842-1848 (2002)
[3] Park, C. H.; Jeong, H. J.; Jung, J. J.; Lee, G. Y.; Kim, S. C.; Kim, T. S.; Yang, S. H.; Chung, H. C.; Rha, S. Y.: Fabrication of high quality cdna microarray using a small amount of cdna, Int. J. Mol. med. 13, 675-679 (2004)
[4] Yang, J. T.; Huang, K. J.; Chen, A. C.: Microfabrication and laser diagnosis of pressure-swirl atomizers, J. microelectromech. Sys. 13, 843-850 (2004)
[5] Chen, A. U.; Basaran, O. A.: A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production, Phys. fluids 14, L1-L4 (2002) · Zbl 1184.76098 · doi:10.1063/1.1427441
[6] Cooper-White, J. J.; Fagan, J. E.; Tirtaatmadja, V.; Lester, D. R.; Boger, D. V.: Drop formation dynamics of constant low-viscosity, elastic fluids, J. non-Newtonian fluid mech. 106, 29-59 (2002) · Zbl 1008.76504 · doi:10.1016/S0377-0257(02)00084-8
[7] Eggers, J.: Drop formation - an overview, Zamm-Z. Angew. math. Me. 85, 400-410 (2005) · Zbl 1071.76018 · doi:10.1002/zamm.200410193
[8] Trouton, F. T.: On the coefficient of viscous traction and its relation to that of viscosity, Proc. R. Soc. London ser. A 77, 426-440 (1906)
[9] Goldin, M.; Yerushalmi, H.; Pfeffer, R.; Shinnar, R.: Breakup of a laminar capillary jet of a viscoelastic fluid, J. fluid mech. 38, 689-711 (1969)
[10] Oliveira, M. S. N.; Mckinley, G. H.: Iterated stretching and multiple breads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers, Phys. fluids 17, 071704 (2005) · Zbl 1187.76390 · doi:10.1063/1.1949197
[11] R.A. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 2, 2nd edition, John Wiley & Sons, New York, 1987.
[12] Entov, V. M.; Hinch, E. J.: Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid, J. non-Newtonian fluid mech. 72, 31-53 (1997)
[13] Fuller, G. G.; Cathey, C. A.; Hubbard, B.; Zebrowski, B. E.: Extensional viscosity measurements for low-viscosity fluids, J. rheol. 31, 235-249 (1987)
[14] Dontula, P.; Pasquali, M.; Scriven, L. E.; Macosko, C. W.: Can extensional viscosity be measured with opposed nozzle devices?, Rheol. acta 36, 429-448 (1997)
[15] Bazilevskii, A. V.; Entov, V. M.; Rozhkov, A. N.: Liquid filament microrheometer and some of its applications, Third European rheology conference (1990)
[16] Mckinley, G. H.; Tripathi, A.: How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer, J. rheol., 44 (2000)
[17] Matta, J. E.; Tytus, R. P.: Liquid stretching using a falling cylinder, J. non-Newtonian fluid mech. 35, 215-229 (1990)
[18] Sridhar, T.; Tirtaatmadja, V.; Nguyen, D. A.; Gupta, R. K.: Measurement of extensional viscosity of polymer solutions, J. non-Newtonian fluid mech. 40, 271-280 (1991)
[19] Szabo, P.: Transient filament stretching rheometer I: Force balance analysis, Rheol. acta 36, 277-284 (1997)
[20] Mckinley, G. H.; Sridhar, T.: Filament-stretching rheometry of complex fluids, Annu. rev. Fluid mech. 34, 375-415 (2002) · Zbl 0994.76502 · doi:10.1146/annurev.fluid.34.083001.125207
[21] Shipman, R. W. G.; Denn, M. M.; Keunings, R.: Mechanics of the ”falling plate” extensional rheometer, J. non-Newtonian fluid mech. 40, 281-288 (1991)
[22] Kolte, M. I.; Rasmussen, H. K.; Hassager, O.: Transient filament stretching rheometer II: Numerical simulation, Rheol. acta 36, 285-302 (1997)
[23] Yao, M.; Mckinley, G. H.: Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices, J. non-Newtonian fluid mech. 74, 47-88 (1998) · Zbl 0957.76005 · doi:10.1016/S0377-0257(97)00052-9
[24] Sizaire, R.; Legat, V.: Finite element simulation of a filament stretching extensional rheometer, J. non-Newtonian fluid mech. 71, 89-107 (1997)
[25] Zhang, X.; Padgett, R. S.; Basaran, O. A.: Nonlinear deformation and breakup of stretching liquid bridges, J. fluid mech. 329, 207-245 (1996) · Zbl 0899.76133 · doi:10.1017/S0022112096008907
[26] Yao, M.; Mckinley, G. H.; Debbaut, B.: Extensional deformation, stress relaxation and necking failure of viscoelastic filaments, J. non-Newtonian fluid mech. 79, 469-501 (1998) · Zbl 0959.76007 · doi:10.1016/S0377-0257(98)00116-5
[27] Yao, M.; Spiegelberg, S. H.; Mckinley, G. H.: Dynamics of weakly strain-hardening fluids in filament stretching devices, J. non-Newtonian fluid mech. 89, 1-43 (2000) · Zbl 0973.76540 · doi:10.1016/S0377-0257(99)00028-2
[28] Matallah, H.; Banaai, M. J.; Sujatha, K. S.; Webster, M. F.: Modelling filament stretching flows with strain-hardening models and sub-cell approximations, J. non-Newtonian fluid mech. 134, 77-104 (2006) · Zbl 1123.76311 · doi:10.1016/j.jnnfm.2005.12.005
[29] Giesekus, H.: A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. non-Newtonian fluid mech. 11, 69-109 (1982) · Zbl 0492.76004 · doi:10.1016/0377-0257(82)85016-7
[30] Papanastasiou, A. C.; Scriven, L. E.; Macosko, C. W.: An integral constitutive equation for mixed flows: viscoelastic characterization, J. rheol. 27, 387-410 (1983)
[31] Hassager, O.; Kolte, M. I.; Renardy, M.: Failure and nonfailure of fluid filaments in extension, J. non-Newtonian fluid mech. 76, 137-151 (1998) · Zbl 0965.76007 · doi:10.1016/S0377-0257(97)00115-8
[32] Foteinopoulou, K.; Mavrantzas, V. G.; Tsamopoulos, J.: Numerical simulation of bubble growth in Newtonian and viscoelastic filaments undergoing stretching, J. non-Newtonian fluid mech. 122, 177-200 (2004) · Zbl 1143.76329 · doi:10.1016/j.jnnfm.2004.02.012
[33] Foteinopoulou, K.; Mavrantzas, V. G.; Dimakopoulos, Y.; Tsamopoulos, J.: Numerical simulation of multiple bubbles growing in a Newtonian liquid filament undergoing stretching, Phys. fluids 18, 042106 (2006)
[34] Stone, H. A.; Leal, L. G.: The effects of surfactants on drop deformation and breakup, J. fluid mech. 220, 161-186 (1990) · Zbl 0706.76124 · doi:10.1017/S0022112090003226
[35] Lister, J. R.; Stone, H. A.: Capillary breakup of a viscous thread sorrounded by another viscous fluid, Phys. fluids 10, 2758-2764 (1998) · Zbl 1185.76548 · doi:10.1063/1.869799
[36] Hirt, C. W.; Nichols, B. D.: Volume of fluid (VOF) method for the dynamics of free boundaries, J. comp. Phys. 39, 201-225 (1981) · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[37] Osher, S.; Sethian, J. A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation, J. comp. Phys. 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[38] Kistler, S. F.; Scriven, L. E.: Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system, Int. J. Numer. methods fluid. 4, 207-229 (1984) · Zbl 0555.76026 · doi:10.1002/fld.1650040302
[39] Christodoulou, K. N.; Scriven, L. E.: Discretization of free surface flows and other moving boundary problems, J. comp. Phys. 99, 39-55 (1992) · Zbl 0743.76050 · doi:10.1016/0021-9991(92)90273-2
[40] Sackinger, P. A.; Schunk, P. R.; Rao, R. R.: A Newton-raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation, J. comp. Phys. 125, 83-103 (1996) · Zbl 0853.65138 · doi:10.1006/jcph.1996.0081
[41] De Almeida, V. F.: Domain deformation mapping: application to variational mesh generation, SIAM J. Sci. comput. 20, 1252-1275 (1999) · Zbl 0931.65088 · doi:10.1137/S1064827594274760
[42] Wilkes, E. D.; Phillips, S. D.; Basaran, O. A.: Computational and experimental analysis of dynamics of drop formation, Phys. fluids 11, 3558-3577 (1999) · Zbl 1149.76585 · doi:10.1063/1.870224
[43] Chen, A. U.; Notz, P. K.; Basaran, O. A.: Computational and experimental analysis of pinch-off and scaling, Phys. rev. Lett. 88, 174501 (2002)
[44] Notz, P. K.; Basaran, O. A.: Dynamics and breakup of a contracting liquid filament, J. fluid mech. 512, 223-256 (2004) · Zbl 1163.76356 · doi:10.1017/S0022112004009759
[45] Suryo, R.; Basaran, O. A.: Local dynamics during pinch-off of liquid threads of power law fluids: scaling analysis and self-similarity, J. non-Newtonian fluid mech. 138, 134-160 (2006) · Zbl 1195.76057 · doi:10.1016/j.jnnfm.2006.04.008
[46] Owens, R. G.; Phillips, T. N.: Computational rheology, (2002) · Zbl 1015.76002
[47] Baaijens, F. P. T.: Mixed finite element methods for viscoelastic flow analysis: a review, J. non-Newtonian fluid mech. 79, 361-385 (1998) · Zbl 0957.76024 · doi:10.1016/S0377-0257(98)00122-0
[48] Romero, O. J.; Scriven, L. E.; Carvalho, M. S.: Slot coating of mildly viscoelastic liquids, J. non-Newtonian fluid mech. 138, 63-75 (2006) · Zbl 1195.76111 · doi:10.1016/j.jnnfm.2005.11.010
[49] Pasquali, M.; Scriven, L. E.: Free surface flows of polymer solutions with models based on conformation tensor, J. non-Newtonian fluid mech. 108, 363-409 (2002) · Zbl 1143.76369 · doi:10.1016/S0377-0257(02)00138-6
[50] Lee, A. G.; Shaqfeh, E. S. G.; Khomami, B.: A study of viscoelastic free surface flows by the finite element method: Hele-Shaw and slot coating flows, J. non Newtonian fluid mech. 108, 327-362 (2002) · Zbl 1143.76479 · doi:10.1016/S0377-0257(02)00137-4
[51] Dimakopoulos, Y.; Tsamopoulos, J.: On the gas-penetration in straight tubes completely filled with a viscoelastic fluid, J. non Newtonian fluid mech. 117, 117-139 (2004) · Zbl 1130.76315 · doi:10.1016/j.jnnfm.2004.01.003
[52] Zevallos, G. A.; Carvalho, M. S.; Pasquali, M.: Forward roll coating flows of viscoelastic liquids, J. non-Newtonian fluid mech. 130, 96-109 (2005) · Zbl 1195.76121 · doi:10.1016/j.jnnfm.2005.08.005
[53] Rasmussen, H. K.; Hassager, O.: Simulation of transient viscoelastic flow, J. non-Newtonian fluid mech. 46, 289-305 (1993) · Zbl 0771.76043 · doi:10.1016/0377-0257(93)85051-B
[54] Harlen, O. G.; Rallison, J. M.; Szabo, P.: A split Lagrangian-Eulerian method for simulating transient viscoelastic flows, J. non-Newtonian fluid mech. 60, 81-104 (1995)
[55] Bach, A.; Rasmussen, H. K.; Longin, P-.Y.; Hassager, O.: Growth of non-axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation, J. non-Newtonian fluid mech. 108, 163-186 (2002) · Zbl 1018.76500 · doi:10.1016/S0377-0257(02)00129-5
[56] Chilcott, M. D.; Rallison, J. M.: Creeping flow of dilute polymer solutions past cylinders and spheres, J. non-Newtonian fluid mech. 29, 381-432 (1988) · Zbl 0669.76016 · doi:10.1016/0377-0257(88)85062-6
[57] Pasquali, M.; Scriven, L. E.: Theoretical modeling of microstructured liquids: a simple thermodynamic approach, J. non-Newtonian fluid mech. 120, 101-135 (2004) · Zbl 1143.76360 · doi:10.1016/j.jnnfm.2004.02.008
[58] Grmela, M.; Carreau, P. J.: Conformation tensor rheological models, J. non-Newtonian fluid mech. 23, 271-294 (1987) · Zbl 0616.76010 · doi:10.1016/0377-0257(87)80022-8
[59] Beris, A. N.; Edwards, B. J.: Thermodynamics of flowing systems with internal microstructure, (1994)
[60] Jongschaap, R. J. J.; De Haas, K. H.; Damen, C. A. J.: A generic matrix representation of configuration tensor rheological models, J. rheol. 38, 769-796 (1994)
[61] J.M. de Santos, Two-phase cocurrent downflow through constricted passages, Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1991. Available from UMI, Ann Arbor, MI, Order Number 9119386.
[62] Szady, M. J.; Salamon, T. R.; Liu, A. W.; Armstrong, R. C.; Brown, R. A.: A new mixed finite element method for viscoelastic flows governed by differential constitutive equations, J. non-Newtonian fluid mech. 59, 215-243 (1995)
[63] Guénette, R.; Fortin, M.: A new finite element method for computing viscoelastic flows, J. non-Newtonian fluid mech. 60, 27-52 (1995)
[64] Fortin, M.: Old and new finite elements for incompressible flows, Int. J. Numer. meth. Fluids 1, 347-364 (1981) · Zbl 0467.76030 · doi:10.1002/fld.1650010406
[65] P.M. Gresho, R.R. Lee, R.C. Sani, On the time-dependent solution of the incompressible Navier – Stokes equations in two and three dimensions, in: C. Taylor, K. Morgan (Eds.), Recent Advances in Numerical Methods in Fluids, vol. 1, Pineridge Press, Swansea, UK, 1980, p. 27. · Zbl 0474.76038
[66] Bodart, C.; Crochet, M.: The time-dependent flow of a viscoelastic fluid around a sphere, J. non-Newtonian fluid mech. 54, 303-329 (1994)
[67] Luskin, M.; Rannacher, R.: On the smoothing property of the Crank-Nicholson scheme, Applicable anal. 14, 117-135 (1982) · Zbl 0476.65062 · doi:10.1080/00036818208839415
[68] Duff, I. S.; Erisman, A. M.; Reid, J. K.: Direct methods for sparse matrices, (1989) · Zbl 0666.65024
[69] Notz, P. K.; Chen, A. U.; Basaran, O. A.: Satellite drops: unexpected dynamics and change of scaling during pinch-off, Phys. fluids 13, 549-552 (2001) · Zbl 1184.76399 · doi:10.1063/1.1343906
[70] Richardson, L. F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonary dam, Phil. trans. R. soc. London ser. A 210, 307-357 (1911) · JFM 42.0873.02 · doi:10.1098/rsta.1911.0009
[71] Li, J. -M.; Burghardt, W. R.; Yang, B.; Khomami, B.: Flow birefringence and computational studies of a shear thinning polymer solution in axi-symmetric stagnation flow, J. non-Newtonian fluid mech. 74, 151-193 (1998) · Zbl 0941.76541 · doi:10.1016/S0377-0257(97)00058-X
[72] Renardy, M.: A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets, J. non-Newtonian fluid mech. 59, 267-282 (1995)
[73] Bousfield, D. W.; Keunings, R.; Marrucci, G.; Denn, M. M.: Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments, J. non-Newtonian fluid mech. 21, 79-97 (1986)
[74] Macosko, C. W.: Rheology, (1994)
[75] Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.: Transport phenomena, (1960)
[76] M. Pasquali, Polymer molecules in free surface coating flows, Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 2000. Available from UMI, Ann Arbor, MI, Order Number 9963019.
[77] Herrchen, M.; Öttinger, H. C.: A detailed comparison of various FENE dumbbell models, J. non-Newtonian fluid mech. 68, 17-42 (1997)
[78] Phan-Thien, N.; Tanner, R. I.: A new constitutive equation derived from network theory, J. non-Newtonian fluid mech. 2, 353-365 (1977) · Zbl 0361.76011 · doi:10.1016/0377-0257(77)80021-9
[79] Gordon, R. J.; Schowalter, W. R.: Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions, Trans. soc. Rheol. 16, 79-97 (1972) · Zbl 0368.76006
[80] Bhat, P. P.; Basaran, O. A.; Pasquali, M.: J. non-Newtonian fluid mech., J. non-Newtonian fluid mech. 150, 211-225 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.