×

zbMATH — the first resource for mathematics

Prediction of crack paths in a quenched glass plate by using peridynamic theory. (English) Zbl 1273.74455
Summary: The peridynamic theory is employed to predict crack growth patterns in quenched glass plates previously considered for an experimental investigation. The plates containing single and multiple pre-existing initial cracks are simulated to investigate the effects of peridynamic and experimental parameters on the crack paths. The critical stretch value in the peridynamic theory and the gap size between the heat reservoirs are determined to be the most significant parameters. The simulation results are in good agreement with the experimental observations published in the literature.

MSC:
74R10 Brittle fracture
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asa-Bedia M, Pomeau Y (1995) Crack instabilities of a heated glass strip. Phys Rev E 52: 4105–4113. doi: 10.1103/PhysRevE.52.4105
[2] Bahr H-A, Gerbatsch A, Bahr U, Weiss H-J (1995) Oscillatory instability in thermal cracking: a first-Order phase-transition phenomenon. Phys Rev E 52: 240–243. doi: 10.1103/PhysRevE.52.240
[3] Berger MJ, Bokhari SH (1987) A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans Comput C-36: 570–580. doi: 10.1109/TC.1987.1676942
[4] Bouchbinder E, Hentschel HE, Procaccia I (2003) Dynamical instabilities of quasistatic crack propagation under thermal stress. Phys Rev E 68: 036601–036614. doi: 10.1103/PhysRevE.68.036601
[5] Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16: 155–169. doi: 10.1007/BF00012619
[6] Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10: 233–248. doi: 10.1016/0020-7225(72)90039-0 · Zbl 0247.73005
[7] Eringen AC, Kim BS (1974a) Stress concentration at the tip of crack. Mech Res Commun 1: 233–237. doi: 10.1016/0093-6413(74)90070-6
[8] Eringen AC, Kim BS (1974b) On the problem of crack tip in nonlocal elasticity. In: Thoft-Christensen P (eds) Proceedings, Continuum Mechanics Aspects of Geodynamics and rock fracture mechanics. D. Reidel Publishing Co., Dordrecht, Holland
[9] Ferney BD, DeVary MR, Hsia KJ, Needleman A (1999) Oscillatory crack growth in glass. Scr Mater 41: 275–281. doi: 10.1016/S1359-6462(99)00161-X
[10] Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313: 1–108. doi: 10.1016/S0370-1573(98)00085-4
[11] Furukawa H (1993) Propagation and pattern of crack in two dimensional dynamical lattice. Prog Theor Phys 90: 949–959. doi: 10.1143/PTP.90.949
[12] Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10: 507–523. doi: 10.1007/BF00155254
[13] Hayakawa Y (1994) Numerical study of oscillatory crack propagation through a two-dimensional crystal. Phys Rev E 49: R1804–R1807. doi: 10.1103/PhysRevE.49.R1804
[14] Hirata M (1931) Experimental studies on form and growth of cracks in glass plate. Sci Pap Inst Phys Chem Res 16: 172–195
[15] Kilic B (2008) Dissertation. The University of Arizona
[16] Korn GA, Korn TM (2000) Mathematical handbook for scientists and engineers, 2nd Rev edn. Dover Publications, New York
[17] Kroner E (1967) Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3: 731–742. doi: 10.1016/0020-7683(67)90049-2 · Zbl 0163.19402
[18] Kunin IA (1982) Elastic media with microstructure I: one dimensional models. Springer-Verlag, Berlin · Zbl 0527.73002
[19] Kunin IA (1983) Elastic media with microstructure II: three-dimensional models. Springer-Verlag, Berlin · Zbl 0536.73003
[20] Marder M (1994) Instability of a crack in a heated strip. Phys Rev E 49: R51–R54
[21] Pham V-B, Bahr H-A, Bahr U, Balke H, Weiss H-J (2008) Global bifurcation criterion for oscillatory crack path instability. Phys Rev E 77: 066114–066124. doi: 10.1103/PhysRevE.77.066114
[22] Pla O, Guinea F, Louis E, Ghaisas SV, Sander LM (2000) Straight cracks in dynamic brittle fracture. Phys Rev B 61: 11472–11486. doi: 10.1103/PhysRevB.61.11472
[23] Rogula D (1983) Nonlocal theory of material media. Springer-Verlag, Berlin · Zbl 0527.73005
[24] Ronsin O, Heslot F, Perrin B (1995) Experimental study of quasistatic brittle crack propagation. Phys Rev Lett 75: 2352–2355. doi: 10.1103/PhysRevLett.75.2352
[25] Ronsin O, Perrin B (1997) Multi-fracture propagation in a directional crack growth experiment. Europhys Lett 38: 435–440. doi: 10.1209/epl/i1997-00264-2
[26] Ronsin O, Perrin B (1998) Dynamics of quasistatic directional crack growth. Phys Rev E 58: 7878–7886. doi: 10.1103/PhysRevE.58.7878
[27] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209. doi: 10.1016/S0022-5096(99)00029-0 · Zbl 0970.74030
[28] Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struc 83: 1526–1535. doi: 10.1016/j.compstruc.2004.11.026
[29] Yang B, Ravi-Chandar K (2001) Crack path instabilities in a quenched glass plate. J Mech Phys Solids 49: 91–130. doi: 10.1016/S0022-5096(00)00022-3 · Zbl 1012.74541
[30] Yoneyama S, Sakaue K, Kikuta H, Takashi M (2008) Observation of stress field around an oscillating crack tip in a quenched thin glass plate. Exp Mech 48: 367–374. doi: 10.1007/s11340-007-9078-0
[31] Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plate. Nature 362: 329–331. doi: 10.1038/362329a0
[32] Yuse A, Sano M (1997) Instabilities of quasi-static crack patterns in quenched glass plates. Physica D 108: 365–378. doi: 10.1016/S0167-2789(97)00011-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.