×

zbMATH — the first resource for mathematics

A specification test for nonlinear nonstationary models. (English) Zbl 1273.62228
Summary: We provide a limit theory for a general class of kernel smoothed U-statistics that may be used for specification testing in time series regression with nonstationary data. The test framework allows for linear and nonlinear models with endogenous regressors that have autoregressive unit roots or near unit roots. The limit theory for the specification test depends on the self-intersection local time of a Gaussian process. A new weak convergence result is developed for certain partial sums of functions involving nonstationary time series that converges to the intersection local time process. This result is of independent interest and is useful in other applications. Simulations examine the finite sample performance of the test.

MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G07 Density estimation
62G10 Nonparametric hypothesis testing
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Akonom, J. (1993). Comportement asymptotique du temps d’occupation du processus des sommes partielles. Ann. Inst. Henri Poincaré Probab. Stat. 29 57-81. · Zbl 0767.60069
[2] Aldous, D. J. (1986). Self-intersections of 1-dimensional random walks. Probab. Theory Related Fields 72 559-587. · Zbl 0602.60055
[3] Bandi, F. M. and Phillips, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica 71 241-283. · Zbl 1136.62365
[4] Bandi, F. M. and Phillips, P. C. B. (2007). A simple approach to the parametric estimation of potentially nonstationary diffusions. J. Econometrics 137 354-395. · Zbl 1360.62443
[5] Berkes, I. and Horváth, L. (2006). Convergence of integral functionals of stochastic processes. Econometric Theory 22 304-322. · Zbl 1130.60023
[6] Borodin, A. N. and Ibragimov, I. A. (1994). Limit theorems for functionals of random walks. Tr. Mat. Inst. Steklova 195 286. · Zbl 0840.60002
[7] Buchmann, B. and Chan, N. H. (2007). Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence. Ann. Statist. 35 2001-2017. · Zbl 1126.62069
[8] Chan, N. H. and Wei, C. Z. (1987). Asymptotic inference for nearly nonstationary AR(1) processes. Ann. Statist. 15 1050-1063. · Zbl 0638.62082
[9] Choi, I. and Saikkonen, P. (2004). Testing linearity in cointegrating smooth transition regressions. Econom. J. 7 341-365. · Zbl 1064.62096
[10] Choi, I. and Saikkonen, P. (2010). Tests for nonlinear cointegration. Econometric Theory 26 682-709. · Zbl 1191.62147
[11] Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics . Academic Press, New York. · Zbl 0539.60029
[12] de Jong, R. and Wang, C.-H. (2005). Further results on the asymptotics for nonlinear transformations of integrated time series. Econometric Theory 21 413-430. · Zbl 1062.62210
[13] Gao, J. (2007). Nonlinear Time Series : Semiparametric and Nonparametric Methods. Monographs on Statistics and Applied Probability 108 . Chapman & Hall/CRC, Boca Raton, FL.
[14] Gao, J., King, M., Lu, Z. and Tjøstheim, D. (2009a). Nonparametric specification testing for nonlinear time series with nonstationarity. Econometric Theory 25 1869-1892. · Zbl 1179.62055
[15] Gao, J., King, M., Lu, Z. and Tjøstheim, D. (2009b). Specification testing in nonlinear and nonstationary time series autoregression. Ann. Statist. 37 3893-3928. · Zbl 1191.62148
[16] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, New York. · Zbl 0462.60045
[17] Hong, S. H. and Phillips, P. C. B. (2010). Testing linearity in cointegrating relations with an application to purchasing power parity. J. Bus. Econom. Statist. 28 96-114. · Zbl 1198.62095
[18] Horowitz, J. L. and Spokoiny, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 69 599-631. · Zbl 1017.62012
[19] Jeganathan, P. (2004). Convergence of functionals of sums of r.v.s to local times of fractional stable motions. Ann. Probab. 32 1771-1795. · Zbl 1049.60019
[20] Karlsen, H. A., Myklebust, T. and Tjøstheim, D. (2007). Nonparametric estimation in a nonlinear cointegration type model. Ann. Statist. 35 252-299. · Zbl 1114.62089
[21] Karlsen, H. A. and Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time series. Ann. Statist. 29 372-416. · Zbl 1103.62335
[22] Kasparis, I. and Phillips, P. C. B. (2012). Dynamic misspecification in nonparametric cointegrating regression. J. Econom. · Zbl 1443.62270
[23] Li, Q. and Wang, S. (1998). A simple consistent bootstrap test for a parametric regression function. J. Econometrics 87 145-165. · Zbl 0943.62031
[24] Marmer, V. (2008). Nonlinearity, nonstationarity, and spurious forecasts. J. Econometrics 142 1-27. · Zbl 1418.62514
[25] Park, J. Y. and Phillips, P. C. B. (1999). Asymptotics for nonlinear transformations of integrated time series. Econometric Theory 15 269-298. · Zbl 0964.62092
[26] Park, J. Y. and Phillips, P. C. B. (2001). Nonlinear regressions with integrated time series. Econometrica 69 117-161. · Zbl 0999.62050
[27] Phillips, P. C. B. (1987). Towards a unified asymptotic theory for autoregression. Biometrika 74 535-547. · Zbl 0654.62073
[28] Phillips, P. C. B. (1988). Regression theory for near-integrated time series. Econometrica 56 1021-1043. · Zbl 0744.62128
[29] Phillips, P. C. B. (2009). Local limit theory and spurious nonparametric regression. Econometric Theory 25 1466-1497. · Zbl 1180.62060
[30] Phillips, P. C. B. and Park, J. Y. (1998). Nonstationary density estimation and kernel autoregression. Discussion Paper 1181, Cowles Foundation, Yale Univ.
[31] Phillips, P. C. B. and Solo, V. (1992). Asymptotics for linear processes. Ann. Statist. 20 971-1001. · Zbl 0759.60021
[32] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0917.60006
[33] Schienle, M. (2008). Nonparametric nonstationary regression. Doctoral thesis, Mannheim Univ.
[34] van der Hofstad, R., den Hollander, F. and König, W. (1997). Central limit theorem for the Edwards model. Ann. Probab. 25 573-597. · Zbl 0873.60009
[35] van der Hofstad, R., den Hollander, F. and König, W. (2003). Weak interaction limits for one-dimensional random polymers. Probab. Theory Related Fields 125 483-521. · Zbl 1037.60023
[36] van der Hofstad, R. and König, W. (2001). A survey of one-dimensional random polymers. J. Stat. Phys. 103 915-944. · Zbl 1126.82313
[37] Wang, Q. and Phillips, P. C. B. (2009a). Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory 25 710-738. · Zbl 1253.62023
[38] Wang, Q. and Phillips, P. C. B. (2009b). Structural nonparametric cointegrating regression. Econometrica 77 1901-1948. · Zbl 1182.62088
[39] Wang, Q. and Phillips, P. C. B. (2011). Asymptotic theory for zero energy functionals with nonparametric regression applications. Econometric Theory 27 235-259. · Zbl 1210.62126
[40] Wang, Q. and Phillips, P. C. B. (2012). Supplement to “A specification test for nonlinear nonstationary models.” . · Zbl 1273.62228
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.