×

zbMATH — the first resource for mathematics

Common fixed points of mappings satisfying implicit contractive conditions. (English) Zbl 1273.54044
Summary: In this article, we obtain, in the setting of metric spaces or ordered metric spaces, coincidence point and common fixed point theorems for self-mappings in a general class of contractions defined by an implicit relation. Our results unify, extend, generalize many related common fixed point theorems from the literature.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banach, S, Sur LES opérations dans LES ensembles abstraits et leur application aux équations intégrales, Fund Math, 3, 133-181, (1922) · JFM 48.0201.01
[2] Rus IA: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca; 2001. · Zbl 0968.54029
[3] Rus IA, Petruşel A, Petruşel G: Fixed Point Theory. Cluj University Press, Cluj-Napoca; 2008. · Zbl 1171.54034
[4] Reem, D; Reich, S; Zaslavski, AJ, Two results in metric fixed point theory, J Fixed Point Theory Appl, 1, 149-157, (2007) · Zbl 1137.47042
[5] Reich, S; Zaslavski, AJ, A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8, 303-307, (2007) · Zbl 1151.47054
[6] Reich, S; Zaslavski, AJ, A note on rakotch contraction, Fixed Point Theory, 9, 267-273, (2008) · Zbl 1147.54325
[7] Berinde, V, On the approximation of fixed points of weak contractive mappings, Carpathian J Math, 19, 7-22, (2003) · Zbl 1114.47045
[8] Berinde, V, Approximating fixed points of weak \(φ\)-contractions, Fixed Point Theory, 4, 131-142, (2003) · Zbl 1065.47069
[9] Berinde, V, Approximation fixed points of weak contractions using the Picard iteration, Nonlinear Anal Forum, 9, 43-53, (2004) · Zbl 1078.47042
[10] Berinde, V, Error estimates for approximating fixed points of quasi contractions, Gen Math, 13, 23-34, (2005) · Zbl 1120.41019
[11] Berinde V: Approximation of Fixed Points. Springer, Berlin, Heidelberg, New York; 2007. · Zbl 1165.47047
[12] Berinde, V, General constructive fixed point theorems for ćirić-type almost contractions in metric spaces, Carpathian J Math, 24, 10-19, (2008) · Zbl 1199.54209
[13] Berinde, V, Some remarks on a fixed point theorem for ćirić-type almost contractions, Carpathian J Math, 25, 157-162, (2009) · Zbl 1249.54078
[14] Berinde, V, Approximating common fixed points of noncommuting almost contractions in metric spaces, Fixed Point Theory, 11, 179-188, (2010) · Zbl 1218.54031
[15] Berinde, V, Common fixed points of noncommuting almost contractions in cone metric spaces, Math Commun, 15, 229-241, (2010) · Zbl 1195.54070
[16] Popa, V, Fixed point theorems for implicit contractive mappings, Stud Cerc St Ser Mat Univ Bacău, 7, 127-133, (1997) · Zbl 0967.54041
[17] Popa, V, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math, 32, 157-163, (1999) · Zbl 0926.54030
[18] Ali, J; Imdad, M, Unifying a multitude of common fixed point theorems employing an implicit relation, Commun Korean Math Soc, 24, 41-55, (2009) · Zbl 1168.54325
[19] Aliouche, A; Djoudi, A, Common fixed point theorems for mappings satisfying an implicit relation without decreasing assumption, Hacet J Math Stat, 36, 11-18, (2007) · Zbl 1132.54325
[20] Aliouche, A; Popa, V, General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications, Novi Sad J Math, 39, 89-109, (2009) · Zbl 1265.54149
[21] Berinde, V, Approximating fixed points of implicit almost contractions, Hacet J Math Stat, 40, 93-102, (2012) · Zbl 1279.47084
[22] Popa, V, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turkish J Math, 25, 465-474, (2001) · Zbl 1002.54027
[23] Popa, V, Fixed points for non-surjective expansion mappings satisfying an implicit relation, Bul Ştiinţ Univ Baia Mare Ser B, 18, 105-108, (2002) · Zbl 1031.47034
[24] Popa, V, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat, 19, 45-51, (2005) · Zbl 1089.54022
[25] Popa, V; Imdad, M; Ali, J, Using implicit relations to prove unified fixed point theorems in metric and 2-metric spaces, Bull Malays Math Sci Soc, 33, 105-120, (2010) · Zbl 1186.54041
[26] Abbas, M; Ilic, D, Common fixed points of generalized almost nonexpansive mappings, Filomat, 24, 11-18, (2010) · Zbl 1258.47068
[27] Babu, GVR; Sandhy, ML; Kameshwari, MVR, A note on a fixed point theorem of berinde on weak contractions, Carpathian J Math, 24, 8-12, (2008) · Zbl 1199.54205
[28] Berinde, V, Stability of Picard iteration for contractive mappings satisfying an implicit relation, Carpathian J Math, 27, 13-23, (2011) · Zbl 1265.54152
[29] Chatterjea, SK, Fixed-point theorems, C R Acad Bulgare Sci, 25, 727-730, (1972) · Zbl 0274.54033
[30] Hardy, GE; Rogers, TD, A generalization of a fixed point theorem of Reich, Canad Math Bull, 16, 201-206, (1973) · Zbl 0266.54015
[31] Kannan, R, Some results on fixed points, Bull Calcutta Math Soc, 10, 71-76, (1968) · Zbl 0209.27104
[32] Reich, S, Fixed points of contractive functions, Boll Un Mat Ital, 5, 26-42, (1972) · Zbl 0249.54026
[33] Reich, S, Kannan’s fixed point theorem, Boll Un Mat Ital, 4, 1-11, (1971) · Zbl 0219.54042
[34] Reich, S, Some remarks concerning contraction mappings, Can Math Bull, 14, 121-124, (1971) · Zbl 0211.26002
[35] Rhoades, BE, A comparison of various definitions of contractive mappings, Trans Am Math Soc, 226, 257-290, (1977) · Zbl 0365.54023
[36] Rhoades, BE, Contractive definitions revisited, Contemp Math, 21, 189-205, (1983) · Zbl 0528.54037
[37] Rhoades, BE, Contractive definitions and continuity, Contemp Math, 72, 233-245, (1988)
[38] Zamfirescu, T, Fix point theorems in metric spaces, Arch Math (Basel), 23, 292-298, (1972) · Zbl 0239.54030
[39] Turinici, M, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J Math Anal Appl, 117, 100-127, (1986) · Zbl 0613.47037
[40] Ran, ACM; Reurings, MC, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc Am Math Soc, 132, 1435-1443, (2004) · Zbl 1060.47056
[41] Nieto, JJ; Rodríguez-López, R, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 223-239, (2005) · Zbl 1095.47013
[42] Cherichi, M; Samet, B, Fixed point theorems on ordered gauge spaces with applications to non-linear integral equations, Fixed Point Theory Appl, 2012, 13, (2012) · Zbl 1273.54048
[43] Ćirić, L; Agarwal, RP; Samet, B, Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theory Appl, 2011, 56, (2011) · Zbl 1271.54078
[44] Golubović, Z; Kadelburg, Z; Radenović, S, Common fixed points of ordered g-quasicontractions and weak contractions in ordered metric spaces, Fixed Point Theory Appl, 2012, 20, (2012) · Zbl 1273.54055
[45] Samet, B, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal, 72, 4508-4517, (2010) · Zbl 1264.54068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.