×

Nonlinear time-fractional differential equations in combustion science. (English) Zbl 1273.34013

Summary: The application of fractional calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are re-derived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order \(1/2\) with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion processes with similarity parameter \(\nu /2 > 0\), the evolution equations emerge to be nonlinear time-fractional differential equations of order \(1-\nu /2\) with a non-Gaussian underlying diffusion process.

MSC:

34A08 Fractional ordinary differential equations
80A25 Combustion
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] J. Audounet, V. Giovangigli, J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Physica D 121 (1998), 295-316. http://dx.doi.org/10.1016/S0167-2789(98)00153-5; · Zbl 0938.80003
[2] J. Audounet, J.-M. Roquejoffre, An asymptotic fractional differential model of spherical flame. In: ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications 5 (Eds. D. Matignon, G. Montseny), SMAI, Paris (1998), 15-27. http://www.emath.fr/proc/vol.5/; · Zbl 0915.65139
[3] J. D. Buckmaster, G. Joulin, P. D Ronney, The structure and stability of non adiabatic flame balls. Combust. Flame 79 (1990), 381-392. http://dx.doi.org/10.1016/0010-2180(90)90147-J;
[4] J. D. Buckmaster, G. Joulin, P. D. Ronney, The structure and stability of non adiabatic flame balls: II. Effects of far field losses. Combust. Flame 84 (1991), 411-422. http://dx.doi.org/10.1016/0010-2180(91)90015-4;
[5] R. Gorenflo, S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991).; · Zbl 0717.45002
[6] R. Gorenflo, R. Rutman, On ultraslow and intermediate processes. In: Transform Methods and Special Functions, Sofia, 1994 (Eds. P. Rusev, I. Dimovski, V. Kiryakova), Science Culture Technology, Singapore (1995), 171-183.; · Zbl 0923.34005
[7] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (Eds. A. Carpinteri, F. Mainardi), Springer-Verlag Wien and New York (1997), 223-276. http://arxiv.org/abs/805.3823; · Zbl 1438.26010
[8] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1 (1998), 167-191.; · Zbl 0946.60039
[9] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. J. Comput. Appl. Anal. 118 (2000), 175-191.; · Zbl 0973.35012
[10] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus. Lecture Notes of Mini-Course on Fractional Calculus and Fractional Diffusion Processes by F. Mainardi and R. Gorenflo, at the Centre for Mathematical Physics and Stochastics (Ma-PhySto), University of Aarhus, Denmark, on January 24-28, 2000. http://www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps; · Zbl 1030.26004
[11] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chemical Physics 284 (2002), 521-541. http://arxiv.org/pdf/cond-mat/0702072 http://dx.doi.org/10.1016/S0301-0104(02)00714-0; · Zbl 0986.82037
[12] V. Guyonne, P. Noble, On a model of flame ball with radiative transfer. SIAM J. Appl. Math. 67 (2007), 854-868. http://dx.doi.org/10.1137/060659612; · Zbl 1123.80006
[13] G. Joulin, Point-source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 185 (1985), 99-113. http://dx.doi.org/10.1080/00102208508946999;
[14] E. K. Lenzi, M. K. Lenzi, L. R. Evangelista, L. C. Malacarne, R. S. Mendes, Solutions for a fractional nonlinear diffusion equation with external force and absorbent term. J. Stat. Mech. (2009), P02048.;
[15] F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons & Fractals 7 (1996), 1461-1477. http://dx.doi.org/10.1016/0960-0779(95)00125-5; · Zbl 1080.26505
[16] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153-192. http://arxiv.org/abs/cond-mat/0702419; · Zbl 1054.35156
[17] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Diff. Equations 2010 (2010), 104505.; · Zbl 1222.60060
[18] P. D. Ronney, Near-limit flame structures at low Lewis number. Combust. Flame 82 (1990), 1-14. http://dx.doi.org/10.1016/0010-2180(90)90074-2;
[19] P. D. Ronney, K. N. Whaling, A. Abbud-Madrid, J. L. Gatto, V. L. Pisowicz, Stationary premixed flames in spherical and cylindrical geometries. AIAA J. 32 (1994), 569-577. http://dx.doi.org/10.2514/3.12023;
[20] P. D. Ronney, M. S. Wu, H. G. Pearlman, K. J. Weiland, Structure Of Flame Balls At Low Lewis-number (SOFBALL): Preliminary results from STS-83 space flight experiments. AIAA J. 36 (1998), 1361-1368. http://dx.doi.org/10.2514/2.553;
[21] H. Rouzaud, Dynamique d’un modèle intégro-différentiel de flamme sphérique avec pertes de chaleur. C. R. Acad. Sci. Paris Série I 332 (2001), 1083-1086.; · Zbl 0984.45007
[22] I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today November (2002), 48-54.;
[23] Ya. B. Zeldovich, Theory of Combustion and Detonation of Gases. Academy of Sciences (USSR), Moscow (1944).;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.