×

General Love solution in the linear isotropic inhomogeneous theory of radius-dependent elasticity. (English. Ukrainian original) Zbl 1272.74036

Int. Appl. Mech. 46, No. 3, 245-254 (2010); translation from Prik. Mekh., Kiev 46, No. 3, 3-13 (2010).
Summary: A general Love solution for the inhomogeneous linear isotropic theory of elasticity with the elastic constants dependent on the coordinate \(r\) is proposed. The axisymmetric case is analyzed and cylindrical coordinates are used. This is the fourth publication in the series on general solutions in the inhomogeneous theory of elasticity. The new results are promising for the modern theory of functionally graded materials. The key steps of deriving the Love solutions are described for further use of the derivation procedure. The procedure of generalizing the Love solutions to the inhomogeneous theory of elasticity is detailed. The results obtained are discussed.

MSC:

74B05 Classical linear elasticity
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Yu. Kashtalyan and J. J. Rushchitsky, ”General Hoyle–Youngdahl and Love solutions in the linear inhomogeneous theory of elasticity,” Int. Appl. Mech., 46, No. 1, 1–17 (2010). · Zbl 1272.74034
[2] M. Yu. Kashtalyan and J. J. Rushchitsky, ”Love solutions in the linear inhomogeneous transversely isotropic theory of elasticity,” Int. Appl. Mech., 46, No. 2, 121–129 (2010). · Zbl 1272.74035
[3] M. A. Koltunov, Yu. N. Vasil’ev, and V. A. Chernykh, Elasticity and Strength of Cylindrical Bodies [in Russian], Vysshaya Shkola, Moscow (1975).
[4] V. A. Lomakin, Theory of Elasticity of Inhomogeneous Bodies [in Russian], Izd. Mosk. Univ., Moscow (1976). · Zbl 0367.76056
[5] A. I. Lurie, Theory of Elasticity, Springer, Berlin (1999). · Zbl 1035.78021
[6] V. Birman and L. W. Bird, ”Modeling and analysis of FGM and structures,” Appl. Mech. Rev., 60, 195–216 (2007).
[7] C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructures, World Scientific, Singapore–London (2007). · Zbl 1152.74001
[8] C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, ”Physical constants for one type of nonlinearly elastic fibrous microand nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005). · Zbl 1129.74013
[9] N. Gupta, S. K. Gupta, and B. J. Mueller, ”Analysis of a functionally graded particulate composite under flexural loading conditions,” Mater. Sci, Eng., A485, No. 1–2, 439–447 (2008).
[10] A. N. Guz and J. J. Rushchitsky, ”Nanomaterials: On the mechanics of nanomaterials,” Int. Apl. Mech., 39, No. 11, 1271–1293 (2003). · Zbl 1130.74338
[11] A. N. Guz, J. J. Rushchitsky, and I. A. Guz, ”Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007). · Zbl 1272.74117
[12] A. N. Guz, J. J. Rushchitsky, and I. A. Guz, ”Comparative computer modeling of carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes,” Comp. Model. Eng. Sci., 26, No. 3, 159–176 (2008).
[13] I. A. Guz and J. J. Rushchitsky, ”Comparing the evolution characteristics of waves in nonlinearly elastic micro- and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004). · Zbl 1130.74339
[14] I. A. Guz and J. J. Rushchitsky, ”Theoretical description of a delamination mechanism in fibrous micro- and nano-composites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).
[15] I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, ”Developing the mechanical models for nanomaterials,” Composites. Part A: Appl. Sci. Manufact., 38, No. 4, 1234–1250 (2007).
[16] I. A. Guz and J. J. Rushchitsky, ”Computational simulation of harmonic wave propagation in fibrous micro- and nanocomposites,” Compos. Sci. Technol., 67, No. 4, 861–866 (2007).
[17] I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, ”Predicting the properties of micro and nanocomposites: from the microwhiskers to bristled nano-centipedes,” Philos. Trans. Royal Society, A: Math. Phys. Eng. Sci., 365, No. 1860, 3233–3239 (2008). · Zbl 1153.74313
[18] H. G. Hahn, Elastizitatstheorie. Grundlagen der linearen Theorie and Anwendungen auf eindimensionale, ebene und raumliche Probleme, B. G. Teubner, Stuttgart (1985).
[19] M. Kashtalyan, ”Three-dimensional elasticity solution for bending of functionally graded rectangular plates,” Europ. J. Mech. A/Solids, 23, No. 5, 853–864 (2004). · Zbl 1058.74569
[20] M. Kashtalyan and M. Menshykova, ”Three-dimensional elastic deformation of a functionally graded coating/substrate system,” Int. J. Solids Struct., 44, No. 16, 5272–5288 (2007). · Zbl 1135.74012
[21] M. Kashtalyan and M. Menshykova, ”Three-dimensional analysis of a functionally graded coating\(\sim\)/\(\sim\)substrate system of finite thickness,” Phil. Trans. Royal Society A, 336, No. 1871, 1821–1826 (2008). · Zbl 1153.74314
[22] M. Kashtalyan and M. Menshykova, ”Three-dimensional elasticity solution for sandwich panels with a functionally graded core,” Compos. Struct., 74, No. 2, 326–336 (2009).
[23] M. Kashtalyan and J. J. Rushchitsky, ”Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media,” Int. J. Solids Struct., 46, No. 19, 3654–3662 (2009). · Zbl 1167.74361
[24] W. A. Kayssen and B. Ilschner, ”FGM research activities in Europe,” MRS Bull., 20, 22–26 (1995).
[25] M. Koizumi, ”Concept of FGM,” Ceramic Trans., 34, 3–10 (1993).
[26] M. Koizumi, ”FGM activities in Japan,” Composites B, B 28, 1–4 (1997).
[27] X. Y. Li, H. J. Ding, and W. Q. Chen, ”Elasticity solutions for a transversely isotropic FGM circular plate subject to an axisymmetric transverse load qr k ,” Int. J. Solids Struct., 45, 191–210 (2008). · Zbl 1167.74486
[28] X. Y. Li, H. J. Ding, and W. Q. Chen, ”Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic FGM,” Acta Mech., 196, 139–159 (2008). · Zbl 1142.74024
[29] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1944).
[30] Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford, FGM: Design, Processing and Applications, Kluwer, Dordrecht (1999).
[31] W. Nowacki, Elasticity Theory [in Polish], PWN, Warsaw (1970). · Zbl 0211.28701
[32] M. J. Pindera, S. M. Arnold, J. Aboudi, and D. Hui, ”Use of composites in FGM,” Compos. Eng., 4, 1–145 (1994).
[33] V. P. Plevako, ”On the theory of elasticity of inhomogeneous media,” J. Appl. Math. Mech., 35, No. 5, 806–813 (1971). · Zbl 0252.73013
[34] Y. N. Shabana and N. Noda, ”Numerical evaluation of the thermomechanical effective properties of FGM using homogenization method,” Int. J. Solids Struct., 45, 3494–3506 (2008). · Zbl 1169.74534
[35] S. Suresh and A. Mortensen, Fundamentals of FGM, Maney, London (1998).
[36] M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota (eds.), Proc. 1st Symp. on FGM Forum and the Society of Non-Traditional Technology, Japan (1990).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.