×

zbMATH — the first resource for mathematics

A central difference numerical scheme for fractional optimal control problems. (English) Zbl 1272.49068
Summary: This paper presents a modified numerical scheme for a class of fractional optimal control problems where a fractional derivative (FD) is defined in the Riemann-Liouville sense. In this scheme, the entire time domain is divided into several sub-domains, and a FD at a time node point is approximated using a modified Grünwald-Letnikov approach. For the first-order derivative, the proposed modified Grünwald-Letnikov definition leads to a central difference scheme. When the approximations are substituted into the fractional optimal control equations, it leads to a set of algebraic equations which are solved using a direct numerical technique. Two examples, one time-invariant and the other time-variant, are considered to study the performance of the numerical scheme. Results show that 1) as the order of the derivative approaches an integer value, these formulations lead to solutions for the integer-order system, and 2) as the sizes of the sub-domains are reduced, the solutions converge. It is hoped that the present scheme would lead to stable numerical methods for fractional differential equations and optimal control problems.

MSC:
49M99 Numerical methods in optimal control
65K10 Numerical optimization and variational techniques
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Agrawal, O.P., International Journal of Control 50 (2) pp 627– (1989) · Zbl 0679.49031 · doi:10.1080/00207178908953385
[2] Agrawal., O.P., Journal of Applied Mechanics 68 pp 339– (2001) · Zbl 1110.74310 · doi:10.1115/1.1352017
[3] Agrawal, O.P., Journal of Mathematical Analysis and Applications 272 pp 368– (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[4] Agrawal, O.P., Nonlinear Dynamics 38 pp 323– (2004) · Zbl 1121.70019 · doi:10.1007/s11071-004-3764-6
[5] Agrawal, O.P., 2005, ”A general scheme for stochastic analysis of fractional optimal control problems,” Fractional Differentiation and its Applications , A. L. Mahaute, J. A. T. Machado, J. C. Trigeassou, and J. Sabatier (eds.), U Books , Germany, pp. 615-624.
[6] Atanackovic, T.M., ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 87 (7) pp 537– (2007) · Zbl 1131.34003 · doi:10.1002/zamm.200710335
[7] Baleanu, D., Czechoslovak Journal of Physics 54 pp 1165– (2004) · doi:10.1007/s10582-004-9774-2
[8] Baleanu, D., Signal Processing 86 pp 2632– (2006) · Zbl 1172.94362 · doi:10.1016/j.sigpro.2006.02.008
[9] Baleanu, D., Nuovo Cimento B 119 pp 73– (2004)
[10] Baleanu, D., Physica Scripta 72 pp 119– (2005) · Zbl 1122.70360 · doi:10.1238/Physica.Regular.072a00119
[11] Bryson Jr., A.E., Applied Optimal Control: Optimization, Estimation, and Control (1975)
[12] Dreisigmeyer, D.W., Journal of Physics A: Mathematical and General 36 pp 8297– (2003) · Zbl 1079.70014 · doi:10.1088/0305-4470/36/30/307
[13] Dreisigmeyer, D.W., Journal of Physics A: Mathematical and General 37 pp 117– (2004) · Zbl 1073.70014 · doi:10.1088/0305-4470/37/11/L01
[14] Gregory, J., Constrained Optimization in the Calculus of Variations and Optimal Control Theory (1992) · Zbl 0822.49001 · doi:10.1007/978-94-011-2918-3
[15] Hestenes, M.R., Calculus of Variations and Optimal Control Theory (1966) · Zbl 0173.35703
[16] Kilbas, A.A., Theory and Applications of Fractional Differential Equations (2006) · Zbl 1138.26300
[17] Klimek, M., Czechoslovak Journal of Physics 51 pp 1348– (2001) · Zbl 1064.70507 · doi:10.1023/A:1013378221617
[18] DOI: 10.1088/0305-4470/35/31/311 · Zbl 1039.35005 · doi:10.1088/0305-4470/35/31/311
[19] Magin, R.L., Fractional Calculus in Bioengineering (2006)
[20] Muslih, S.I., Journal of Mathematical Analysis and Applications 304 pp 599– (2005) · Zbl 1149.70320 · doi:10.1016/j.jmaa.2004.09.043
[21] Muslih, S.I., Czechoslovak Journal of Physics 55 pp 633– (2005) · Zbl 1181.70017 · doi:10.1007/s10582-005-0067-1
[22] Muslih, S.I., Physica Scripta 73 pp 436– (2006) · Zbl 1165.70310 · doi:10.1088/0031-8949/73/5/003
[23] Podlubny, I., Fractional Differential Equations (1999) · Zbl 0924.34008
[24] Rabei, E.M., International Journal of Theoretical Physics 45 (9) pp 1619– (2006) · Zbl 1119.81068 · doi:10.1007/s10773-005-9001-3
[25] Riewe., F., Physical Review E 53 (2) pp 1890– (1996) · doi:10.1103/PhysRevE.53.1890
[26] Riewe, R., Physical Review E 55 (3) pp 3582– (1997) · doi:10.1103/PhysRevE.55.3581
[27] Stanislavsky, A.A., European Physical Journal B 49 (1) pp 93– (2006) · doi:10.1140/epjb/e2006-00023-3
[28] Tarasov, V.E., Physica A-Statistical Mechanics and Its Applications 354 pp 249– (2005) · doi:10.1016/j.physa.2005.02.047
[29] Tarasov, V.E., Journal of Physics A: Mathematical and General 39 (31) pp 9797– (2006) · Zbl 1101.70011 · doi:10.1088/0305-4470/39/31/010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.