# zbMATH — the first resource for mathematics

A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. (English) Zbl 1272.49065
Summary: In the present contribution, a modified Legendre pseudospectral scheme for accurate and efficient solution of bang-bang optimal control problems is investigated. In this scheme control and state functions are considered as piecewise constant and piecewise continuous polynomials, respectively, and the switching points are also taken as decision variables. Furthermore, for simplicity in discretization, the integral formulation of the dynamical equations is considered. Thereby, the problem is converted into a mathematical programming problem which can be solved by the well-developed parameter optimization algorithms. The main advantages of the present method are that: (i) it obtains good results even by using a small number of collocation points and the rate of convergence is high; (ii) the switching times can be captured accurately; and (iii) the wrongly chosen number of switching points can be detected by the results of the method. These are illustrated through a numerical implementation of the method on three examples and the efficiency of the method is reported.

##### MSC:
 49M30 Other numerical methods in calculus of variations (MSC2010) 49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
OPQ
Full Text:
##### References:
 [1] Huang, Time-optimal control for a robotic contour following problem, IEEE Journal of Robotics and Automation 4 (2) pp 140– (1998) · doi:10.1109/56.2077 [2] Betts, Survey of numerical methods for trajectory optimization, Journal of Guidance, Control, and Dynamics 21 (2) pp 193– (1998) · Zbl 1158.49303 · doi:10.2514/2.4231 [3] Hu, Minimum-time control of a crane with simultaneous traverse and hoisting motions, Journal of Optimization Theory and Applications 120 (2) pp 395– (2004) · Zbl 1045.49027 · doi:10.1023/B:JOTA.0000015690.02820.ea [4] Kim, High-speed switch-on of a semiconductor gas discharge image converter using optimal control methods, Journal of Computational Physics 170 (1) pp 395– (2001) · Zbl 1053.82521 · doi:10.1006/jcph.2001.6741 [5] Olsder, On open- and closed-loop bang-bang control in nonzero-sum differential games, SIAM Journal on Control and Optimization 40 (4) pp 1087– (2001) · Zbl 1005.91023 · doi:10.1137/S0363012900373252 [6] Ledzewicz, Analysis of a cell-cycle specific model for cancer chemotherapy, Journal of Biological Systems 10 (3) pp 183– (2002) · Zbl 1099.92035 · doi:10.1142/S0218339002000597 [7] Ledzewicz, Optimal bang-bang controls for a two-compartment model in cancer chemotherapy, Journal of Optimization Theory and Applications 114 (3) pp 609– (2002) · Zbl 1035.49020 · doi:10.1023/A:1016027113579 [8] Meier, Efficient algorithm for time-optimal control of a two-link manipulator, Journal of Guidance, Control, and Dynamics 13 (5) pp 859– (1990) · Zbl 0701.70028 · doi:10.2514/3.25412 [9] Mohler, Mathematics in Science and Engineering 106 (1973) [10] Mohler, Nonlinear Systems. Volume 2: Applications to Bilinear Control (1991) [11] Lee, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems Applications 6 (2) pp 243– (1997) · Zbl 0894.49018 [12] Bertrand, New smoothing techniques for solving bang-bang optimal control problems-numerical results and statistical interpretation, Optimal Control Applications and Methods 23 pp 171– (2002) · Zbl 1072.49502 · doi:10.1002/oca.709 [13] Kaya, Computations and time-optimal controls, Optimal Control Applications and Methods 17 (3) pp 171– (1996) · Zbl 0861.49008 · doi:10.1002/(SICI)1099-1514(199607/09)17:3<171::AID-OCA571>3.0.CO;2-9 [14] Kaya, Computational method for time-optimal switching control, Journal of Optimization Theory and Applications 117 (1) pp 69– (2003) · Zbl 1029.49029 · doi:10.1023/A:1023600422807 [15] Kaya, Computations for bang-bang constrained optimal control using a mathematical programming formulation, Optimal Control Applications and Methods 25 (6) pp 295– (2004) · Zbl 1073.49019 · doi:10.1002/oca.749 [16] Büskens, Online Optimization of Large Scale Systems pp 129– (2001) · doi:10.1007/978-3-662-04331-8_9 [17] Hu, An enhanced transcribing scheme for the numerical solution of a class of optimal control problems, Engineering Optimization 34 (2) pp 155– (2002) · doi:10.1080/03052150210914 [18] Lastman, A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems, International Journal of Control 27 pp 513– (1978) · Zbl 0394.65024 · doi:10.1080/00207177808922388 [19] Teo, Pitman Monographs and Surveys in Pure and Applied Mathematics, in: A Unified Computational Approach to Optimal Control Problems (1991) [20] Maurer, Second order sufficient conditions for time-optimal bang-bang control, SIAM Journal on Control and Optimization 42 (6) pp 2239– (2004) · Zbl 1068.49015 · doi:10.1137/S0363012902402578 [21] Maurer, Optimization methods for the verification of second order sufficient conditions for bangbang controls, Optimal Control Applications and Methods 26 pp 129– (2005) · doi:10.1002/oca.756 [22] Canuto, Springer Series in Computational Physics, in: Spectral Methods in Fluid Dynamics (1991) [23] Fornberg, A Practical Guide to Pseudospectral Methods (1998) · Zbl 0912.65091 [24] Trefethen, Software-Environments-Tools 10 (2000) [25] Razzaghi, Numerical solution of the controlled Duffing oscillator by the pseudospectral method, Journal of Computational and Applied Mathematics 56 (3) pp 253– (1994) · Zbl 0827.65074 · doi:10.1016/0377-0427(94)90081-7 [26] Fahroo, Direct trajectory optimization by a Chebyshev pseudospectral method, Journal of Guidance, Control, and Dynamics 25 (1) pp 160– (2002) · doi:10.2514/2.4862 [27] Ross IM Rea J Fahroo F Exploiting higher-order derivatives in computational optimal control [28] Elnagar, The pseudospectral Legendre method for discretizing optimal control problems, IEEE Transactions on Automatic Control 40 (10) pp 1793– (1995) · Zbl 0863.49016 · doi:10.1109/9.467672 [29] Shamsi, Recovering a time-dependent coefficient in a parabolic equation from overspecified boundary data using the pseudospectral Legendre method, Numerical Methods for Partial Differential Equations 23 (1) pp 196– (2007) · Zbl 1107.65085 · doi:10.1002/num.20174 [30] Dehghan, Numerical solution of two-dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method, Numerical Methods for Partial Differential Equations 22 (6) pp 1255– (2006) · Zbl 1108.65101 · doi:10.1002/num.20150 [31] Stoer, Numerische Mathematik 2. Eine Einführung-unter Berücksichtigung von Vorlesungen von F. L. Bauer, in: Numerical Mathematics 2. An Introduction-Under Consideration of Lectures by F. L. Bauer (2005) [32] Fletcher, Practical Methods of Optimization (1987) · Zbl 0905.65002 [33] Nocedal, Springer Series in Operations Research, in: Numerical Optimization (1999) · Zbl 0930.65067 · doi:10.1007/b98874 [34] Büskens, SQP methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control, Journal of Computational and Applied Mathematics 120 (1-2) pp 85– (2000) · Zbl 0963.65070 · doi:10.1016/S0377-0427(00)00305-8 [35] Betts, Advances in Design and Control 3 (2001) [36] Bryson, Applied Optimal Control (1969) [37] Gautschi, Orthogonal Polynomials: Computation and Approximation (2004) [38] Williams P A gauss-lobatto quadrature method for solving optimal control problems Stacey A Blyth B Shepherd J Roberts AJ 2006 C101 C115 [39] Ross IM Fahroo F A direct method for solving nonsmooth optimal control problems 3860 3864 [40] Luus, Monographs and Surveys in Pure and Applied Mathematics 110 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.