×

zbMATH — the first resource for mathematics

A dark matter candidate from Lorentz invariance in 6D. (English) Zbl 1271.83083
Summary: We study the unique 6 dimensional orbifold with chiral fermions where a stable dark matter candidate is present due to Lorentz invariance on the orbifold, with no additional discrete symmetries imposed by hand. We propose a model of Universal Extra Dimensions where a scalar photon of few hundred GeV is a good candidate for dark matter. The spectrum of the model is characteristic of the geometry, and it has clear distinctive features compared to previous models of Kaluza-Klein dark matter. The 5 dimensional limit of this model is the minimal model of natural Kaluza-Klein dark matter. Notwithstanding the low mass range preferred by cosmology, the model will be a challenge for the LHC due to the relatively small splitting between the states in the same KK level.

MSC:
83F05 Relativistic cosmology
83E15 Kaluza-Klein and other higher-dimensional theories
Software:
FeynRules
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jungman, G.; Kamionkowski, M.; Griest, K., Supersymmetric dark matter, Phys. Rept., 267, 195, (1996)
[2] Bertone, G.; Hooper, D.; Silk, J., Particle dark matter: evidence, candidates and constraints, Phys. Rept., 405, 279, (2005)
[3] Low, I., T parity and the littlest Higgs, JHEP, 10, 067, (2004)
[4] Appelquist, T.; Cheng, H-C; Dobrescu, BA, Bounds on universal extra dimensions, Phys. Rev., D 64, 035002, (2001)
[5] Servant, G.; Tait, TMP, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys., B 650, 391, (2003)
[6] Dobrescu, BA; Ponton, E., Chiral compactification on a square, JHEP, 03, 071, (2004)
[7] Antoniadis, I., A possible new dimension at a few TeV, Phys. Lett., B 246, 377, (1990)
[8] Antoniadis, I.; Benakli, K.; Quirós, M., Finite Higgs mass without supersymmetry, New J. Phys., 3, 20, (2001)
[9] Csáki, C.; Grojean, C.; Murayama, H., Standard model Higgs from higher dimensional gauge fields, Phys. Rev., D 67, 085012, (2003)
[10] Scrucca, CA; Serone, M.; Silvestrini, L., Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys., B 669, 128, (2003)
[11] L. Nilse, Classification of 1D and 2D orbifolds, hep-ph/0601015 [SPIRES].
[12] Hebecker, A., Grand unification in the projective plane, JHEP, 01, 047, (2004)
[13] J. Polchinski, String theory, Cambridge University Press, Cambridge U.K. (1998).
[14] Csáki, C.; Grojean, C.; Hubisz, J.; Shirman, Y.; Terning, J., Fermions on an interval: quark and lepton masses without a Higgs, Phys. Rev., D 70, 015012, (2004)
[15] Puchwein, M.; Kunszt, Z., Radiative corrections with 5D mixed position-momentum-space propagators, Annals Phys., 311, 288, (2004)
[16] Rold, L., Radiative corrections in 5D and 6D expanding in winding modes, Phys. Rev., D 69, 105015, (2004)
[17] Cheng, H-C; Matchev, KT; Schmaltz, M., Radiative corrections to Kaluza-Klein masses, Phys. Rev., D 66, 036005, (2002)
[18] Ponton, E.; Wang, L., Radiative effects on the chiral square, JHEP, 11, 018, (2006)
[19] Dobrescu, BA; Hooper, D.; Kong, K.; Mahbubani, R., Spinless photon dark matter from two universal extra dimensions, JCAP, 10, 012, (2007)
[20] Kong, K.; Matchev, KT, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP, 01, 038, (2006)
[21] A. Arbey, G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Relic abundance of a Dark Matter candidate on the real projective plane, work in progress.
[22] Burdman, G.; Dobrescu, BA; Ponton, E., Resonances from two universal extra dimensions, Phys. Rev., D 74, 075008, (2006)
[23] Alwall, J.; Le, M-P; Lisanti, M.; Wacker, JG, Model-independent jets plus missing energy searches, Phys. Rev., D 79, 015005, (2009)
[24] Christensen, ND; Duhr, C., Feynrules-Feynman rules made easy, Comput. Phys. Commun., 180, 1614, (2009)
[25] Georgi, H.; Grant, AK; Hailu, G., Brane couplings from bulk loops, Phys. Lett., B 506, 207, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.