×

zbMATH — the first resource for mathematics

On the transverse momentum in \(Z\)-boson production in a virtuality ordered parton shower. (English) Zbl 1271.81180
Summary: Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a \(Z\)-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81U35 Inelastic and multichannel quantum scattering
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ermolaev, BI; Fadin, VS, Log-log asymptotic form of exclusive cross-sections in quantum chromodynamics, JETP Lett., 33, 269, (1981)
[2] Bassetto, A.; Ciafaloni, M.; Marchesini, G.; Mueller, AH, Jet multiplicity and soft gluon factorization, Nucl. Phys., B 207, 189, (1982)
[3] Mueller, AH, Multiplicity and hadron distributions in QCD jets: nonleading terms, Nucl. Phys., B 213, 85, (1983)
[4] Marchesini, G.; Webber, BR, Simulation of QCD jets including soft gluon interference, Nucl. Phys., B 238, 1, (1984)
[5] Catani, S.; D’Emilio, E.; Trentadue, L., The gluon form-factor to higher orders: gluon gluon annihilation at small Q-transverse, Phys. Lett., B 211, 335, (1988)
[6] Catani, S.; Trentadue, L., Resummation of the QCD perturbative series for hard processes, Nucl. Phys., B 327, 323, (1989)
[7] Catani, S.; Ciafaloni, M., Generalized coherent state for soft gluon emission, Nucl. Phys., B 249, 301, (1985)
[8] Ellis, RK; Marchesini, G.; Webber, BR, Soft radiation in parton parton scattering, Nucl. Phys., B 286, 643, (1987)
[9] Catani, S.; Webber, BR; Marchesini, G., QCD coherent branching and semiinclusive processes at large x, Nucl. Phys., B 349, 635, (1991)
[10] Catani, S.; Trentadue, L.; Turnock, G.; Webber, BR, Resummation of large logarithms in \(e\)\^{}{+}\(e\)\^{}{−} event shape distributions, Nucl. Phys., B 407, 3, (1993)
[11] Cacciari, M.; Catani, S., Soft-gluon resummation for the fragmentation of light and heavy quarks at large x, Nucl. Phys., B 617, 253, (2001)
[12] Nagy, Z.; Soper, DE, Final state dipole showers and the DGLAP equation, JHEP, 05, 088, (2009)
[13] Dokshitzer, YL; Marchesini, G., Monte Carlo and large angle gluon radiation, JHEP, 03, 117, (2009)
[14] Nagy, Z.; Soper, DE, Parton showers with quantum interference, JHEP, 09, 114, (2007)
[15] Nagy, Z.; Soper, DE, Parton showers with quantum interference: leading color, spin averaged, JHEP, 03, 030, (2008)
[16] Nagy, Z.; Soper, DE, Parton showers with quantum interference: leading color, with spin, JHEP, 07, 025, (2008)
[17] Gribov, VN; Lipatov, LN, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys., 15, 438, (1972)
[18] Altarelli, G.; Parisi, G., Asymptotic freedom in parton language, Nucl. Phys., B 126, 298, (1977)
[19] Dokshitzer, YL, Calculation of the structure functions for deep inelastic scattering and \(e\)\^{}{+}\(e\)\^{}{−} annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP, 46, 641, (1977)
[20] Skands, PZ; Weinzierl, S., Some remarks on dipole showers and the DGLAP equation, Phys. Rev., D 79, 074021, (2009)
[21] Collins, JC; Soper, DE; Sterman, G., Transverse momentum distribution in Drell-Yan pair and \(W\) and \(Z\) boson production, Nucl. Phys., B 250, 199, (1985)
[22] Balázs, C.; Yuan, CP, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev., D 56, 5558, (1997)
[23] Giele, WT; Kosower, DA; Skands, PZ, A simple shower and matching algorithm, Phys. Rev., D 78, 014026, (2008)
[24] Parisi, G.; Petronzio, R., Small transverse momentum distributions in hard processes, Nucl. Phys., B 154, 427, (1979)
[25] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[26] Collins, JC; Soper, DE; Jets, Back-To-Back, Back-to-back jets in QCD, Nucl. Phys., B 193, 381, (1981)
[27] Kodaira, J.; Trentadue, L., Summing soft emission in QCD, Phys. Lett., B 112, 66, (1982)
[28] Davies, CTH; Stirling, WJ, Nonleading corrections to the Drell-Yan cross-section at small transverse momentum, Nucl. Phys., B 244, 337, (1984)
[29] Ellis, RK; Martinelli, G.; Petronzio, R., Lepton pair production at large transverse momentum in second order QCD, Nucl. Phys., B 211, 106, (1983)
[30] Z. Nagy and D.E. Soper, A new parton shower algorithm: Shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [SPIRES].
[31] Dinsdale, M.; Ternick, M.; Weinzierl, S., Parton showers from the dipole formalism, Phys. Rev., D 76, 094003, (2007)
[32] Schumann, S.; Krauss, F., A parton shower algorithm based on catani-seymour dipole factorisation, JHEP, 03, 038, (2008)
[33] S. Platzer and S. Gieseke, Coherent Parton Showers with Local Recoils, arXiv:0909.5593 [SPIRES].
[34] Sjöstrand, T.; Skands, PZ, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J., C 39, 129, (2005)
[35] Sjöstrand, T.; Mrenna, S.; Skands, PZ, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun., 178, 852, (2008)
[36] Gieseke, S.; Stephens, P.; Webber, B., New formalism for QCD parton showers, JHEP, 12, 045, (2003)
[37] Bahr, M.; etal., Herwig++ physics and manual, Eur. Phys. J., C 58, 639, (2008)
[38] NLO Multileg Working Group collaboration, Z. Bern et al., The NLO multileg working group: Summary report, arXiv:0803.0494 [SPIRES].
[39] Lönnblad, L., ARIADNE version 4: A program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun., 71, 15, (1992)
[40] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[41] Kosower, DA, Antenna factorization of gauge-theory amplitudes, Phys. Rev., D 57, 5410, (1998)
[42] Kosower, DA, Antenna factorization in strongly-ordered limits, Phys. Rev., D 71, 045016, (2005)
[43] Ellis, SD; Fleishon, N.; Stirling, WJ, Logarithmic approximations, quark form-factors and quantum chromodynamics, Phys. Rev., D 24, 1386, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.