×

NLO QCD corrections to \( {\text{t}}\overline{\text{t}} {\text{b}}\overline{\text{b}} \) production at the LHC: 2. Full hadronic results. (English) Zbl 1271.81172

Summary: We present predictions for \( {\text{t}}\overline{\text{t}} {\text{b}}\overline{\text{b}} \) production at the LHC in next-to-leading order QCD. The precise description of this background process is a prerequisite to observe associated \( {\text{t}}\overline{\text{t}} {\text{H}} \) production in the \( {\text{H}} \to {\text{b}}\overline{\text{b}} \) decay channel and to directly measure the top-quark Yukawa coupling at the LHC. The leading-order cross section is extremely sensitive to scale variations. We observe that the traditional scale choice adopted in ATLAS simulations underestimates the \( {\text{t}}\overline{\text{t}} {\text{b}}\overline{\text{b}} \) background by a factor two and introduce a new dynamical scale that stabilizes the perturbative predictions. We study various kinematic distributions and observe that the corrections have little impact on their shapes if standard cuts are applied. In the regime of highly boosted Higgs bosons, which offers better perspectives to observe the \( {\text{t}}\overline{\text{t}} {\text{H}} \) signal, we find significant distortions of the kinematic distributions. The one-loop amplitudes are computed using process-independent algebraic manipulations of Feynman diagrams and numerical tensor reduction. We find that this approach provides very high numerical stability and CPU efficiency.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81U35 Inelastic and multichannel quantum scattering
81U99 Quantum scattering theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, ATLAS detector and physics performance technical design report, volume 2, CERN-LHCC-99-15 [ATLAS-TDR-15] [SPIRES].
[2] ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — detector, trigger and physics, arXiv:0901.0512 [SPIRES].
[3] CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys.G 34 (2007) 995 [SPIRES].
[4] B.P. Kersevan and E. Richter-Was, What is the \[Wb\overline b , Zb\overline b\] or \[t\overline t b\overline b\] irreducible background to the light Higgs boson searches at LHC?, Eur. Phys. J.C 25 (2002) 379 [hep-ph/0203148] [SPIRES].
[5] B.P. Kersevan and E. Richter-Was, The Monte Carlo event generator AcerMC version 1.0 with interfaces to PYTHIA 6.2 and HERWIG 6.3, Comput. Phys. Commun.149 (2003) 142 [hep-ph/0201302] [SPIRES].
[6] J. Cammin and M. Schumacher, The ATLAS discovery potential for the channel \[t\overline t H , H \to b\overline b \], ATL-PHYS-2003-024.
[7] V. Drollinger, T. Müller and D. Denegri, Searching for Higgs bosons in association with top quark pairs in the \[H0 \to b\overline b\] decay mode, hep-ph/0111312 [SPIRES].
[8] S. Cucciarelli et al., Search for \[H0 \to b\overline b\] in association with a \[t\overline t\] pair at CMS, CERN-CMS-NOTE-2006-119 [SPIRES].
[9] D. Benedetti et al., Observability of Higgs produced with top quarks and decaying to bottom quarks, J. Phys.G 34 (2007) N221 [SPIRES].
[10] J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett.100 (2008) 242001 [arXiv:0802.2470] [SPIRES].
[11] T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, arXiv:0910.5472 [SPIRES].
[12] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [SPIRES].
[13] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \[pp \to t\overline t b\overline b + X\] at the LHC, Phys. Rev. Lett.103 (2009) 012002 [arXiv:0905.0110] [SPIRES].
[14] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist:\[ pp \to t\overline t b\overline b \], JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES].
[15] W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett.87 (2001) 201805 [hep-ph/0107081] [SPIRES].
[16] S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev.D 67 (2003) 071503 [hep-ph/0211438] [SPIRES].
[17] S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev.D 68 (2003) 034022 [hep-ph/0305087] [SPIRES].
[18] W. Beenakker et al., NLO QCD corrections to \[t\overline t H\] production in hadron collisions, Nucl. Phys.B 653 (2003) 151 [hep-ph/0211352] [SPIRES].
[19] S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to \[t\overline t \]+ jet production at hadron colliders, Phys. Rev. Lett.98 (2007) 262002 [hep-ph/0703120] [SPIRES].
[20] S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: phenomenological studies for the Tevatron and the LHC, Eur. Phys. J.C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].
[21] A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections to \[t\overline t Z\] production at the LHC, Phys. Lett.B 666 (2008) 62 [arXiv:0804.2220] [SPIRES].
[22] QCD, EW and Higgs Working Group collaborations, C. Buttar et al., Les Houches physics at TeV colliders 2005, standard model and Higgs working group: summary report, hep-ph/0604120 [SPIRES].
[23] NLO Multileg Working Group collaboration, Z. Bern et al., The NLO multileg working group: summary report, arXiv:0803.0494 [SPIRES].
[24] A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams, Nucl. Phys.B 650 (2003) 162 [hep-ph/0209219] [SPIRES]. · Zbl 1005.81059
[25] A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys.B 658 (2003) 175 [hep-ph/0212259] [SPIRES]. · Zbl 1027.81517
[26] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [SPIRES]. · Zbl 1192.81158
[27] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [SPIRES].
[28] W.T. Giele and E.W.N. Glover, A calculational formalism for one-loop integrals, JHEP04 (2004) 029 [hep-ph/0402152] [SPIRES].
[29] W. Giele, E.W.N. Glover and G. Zanderighi, Numerical evaluation of one-loop diagrams near exceptional momentum configurations, Nucl. Phys. (Proc. Suppl.)135 (2004) 275 [hep-ph/0407016] [SPIRES].
[30] R.K. Ellis, W.T. Giele and G. Zanderighi, Semi-numerical evaluation of one-loop corrections, Phys. Rev.D 73 (2006) 014027 [hep-ph/0508308] [SPIRES].
[31] T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP10 (2005) 015 [hep-ph/0504267] [SPIRES].
[32] T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP02 (2007) 013 [hep-ph/0609054] [SPIRES].
[33] T. Diakonidis et al., A complete reduction of one-loop tensor 5- and 6-point integrals, Phys. Rev.D 80 (2009) 036003 [arXiv:0812.2134] [SPIRES].
[34] T. Diakonidis, J. Fleischer, T. Riemann and J.B. Tausk, A recursive reduction of tensor Feynman integrals, Phys. Lett.B 683 (2010) 69 [arXiv:0907.2115] [SPIRES].
[35] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [SPIRES].
[36] C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev.D 74 (2006) 036009 [hep-ph/0604195] [SPIRES].
[37] Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Ann. Phys.322 (2007) 1587 [arXiv:0704.2798] [SPIRES]. · Zbl 1122.81077
[38] C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].
[39] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [SPIRES]. · Zbl 1178.81202
[40] A. Brandhuber, S. McNamara, B.J. Spence and G. Travaglini, Loop amplitudes in pure Yang-Mills from generalised unitarity, JHEP10 (2005) 011 [hep-th/0506068] [SPIRES].
[41] R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes, Phys. Rev.D 73 (2006) 105004 [hep-ph/0602178] [SPIRES].
[42] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].
[43] S.D. Badger, E.W.N. Glover and K. Risager, One-loop phi-MHV amplitudes using the unitarity bootstrap, JHEP07 (2007) 066 [arXiv:0704.3914] [SPIRES].
[44] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [SPIRES].
[45] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [SPIRES]. · Zbl 1246.81170
[46] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [SPIRES]. · Zbl 1196.81234
[47] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067
[48] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [SPIRES].
[49] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES].
[50] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [SPIRES].
[51] R. Keith Ellis, K. Melnikov and G. Zanderighi, W+3 jet production at the Tevatron, Phys. Rev.D 80 (2009) 094002 [arXiv:0906.1445] [SPIRES].
[52] C.F. Berger et al., Next-to-leading order QCD predictions for W+3-jet distributions at hadron colliders, Phys. Rev.D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].
[53] T. Binoth et al., Next-to-leading order QCD corrections to \[pp \to b\overline b b\overline b + X\] at the LHC: the quark induced case, arXiv:0910.4379 [SPIRES].
[54] A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun.180 (2009) 1941 [arXiv:0710.2427] [SPIRES].
[55] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP08 (2009) 085 [arXiv:0905.0883] [SPIRES].
[56] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [SPIRES].
[57] S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys.B 565 (2000) 69 [hep-ph/9904440] [SPIRES].
[58] L. Phaf and S. Weinzierl, Dipole formalism with heavy fermions, JHEP04 (2001) 006 [hep-ph/0102207] [SPIRES].
[59] S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [SPIRES]. · Zbl 0990.81140
[60] F.A. Berends, R. Pittau and R. Kleiss, All electroweak four fermion processes in electron-positron collisions, Nucl. Phys.B 424 (1994) 308 [hep-ph/9404313] [SPIRES].
[61] F.A. Berends, R. Pittau and R. Kleiss, Excalibur: a Monte Carlo program to evaluate all four fermion processes at LEP-200 and beyond, Comput. Phys. Commun.85 (1995) 437 [hep-ph/9409326] [SPIRES].
[62] F.A. Berends, P.H. Daverveldt and R. Kleiss, Complete lowest order calculations for four lepton final states in electron-positron collisions, Nucl. Phys.B 253 (1985) 441 [SPIRES].
[63] J. Hilgart, R. Kleiss and F. Le Diberder, An electroweak Monte Carlo for four fermion production, Comput. Phys. Commun.75 (1993) 191 [SPIRES].
[64] A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+e− → 4 fermions + γ, Nucl. Phys.B 560 (1999) 33 [hep-ph/9904472] [SPIRES].
[65] A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, RACOONWW 1.3: a Monte Carlo program for four-fermion production at e+e−colliders, Comput. Phys. Commun.153 (2003) 462 [hep-ph/0209330] [SPIRES].
[66] S. Dittmaier and M. Roth, LUSIFER: A LUcid approach to SIx FERmion production, Nucl. Phys.B 642 (2002) 307 [hep-ph/0206070] [SPIRES].
[67] T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [SPIRES].
[68] T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. (Proc. Suppl.)89 (2000) 231 [hep-ph/0005029] [SPIRES].
[69] J. Küblbeck, M. Böhm and A. Denner, FeynArts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun.60 (1990) 165 [SPIRES].
[70] H. Eck and J. Küblbeck, Guide to FeynArts 1.0, University of Würzburg, Würzburg Germany (1992).
[71] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [SPIRES]. · Zbl 0994.81082
[72] D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim.A 40 (1965) 181 [SPIRES]. · Zbl 0137.45701
[73] G. Passarino and M.J.G. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg model, Nucl. Phys.B 160 (1979) 151 [SPIRES].
[74] G. Lei, M. Wen-Gan, H. Liang, Z. Ren-You and J. Yi, QCD corrections to \[t\overline t b\overline b\] productions via photon-photon collisions at linear colliders, Phys. Lett.B 654 (2007) 13 [arXiv:0708.2951] [SPIRES].
[75] G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys.B 153 (1979) 365 [SPIRES].
[76] W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. Phys.B 338 (1990) 349 [SPIRES].
[77] A. Denner, U. Nierste and R. Scharf, A compact expression for the scalar one loop four point function, Nucl. Phys.B 367 (1991) 637 [SPIRES].
[78] S. Dittmaier, Separation of soft and collinear singularities from one-loop N-point integrals, Nucl. Phys.B 675 (2003) 447 [hep-ph/0308246] [SPIRES]. · Zbl 1097.81668
[79] A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e+e− → 4 fermion processes: technical details and further results, Nucl. Phys.B 724 (2005) 247 [hep-ph/0505042] [SPIRES].
[80] T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun.81 (1994) 357 [hep-ph/9401258] [SPIRES].
[81] J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP09 (2007) 028 [arXiv:0706.2334] [SPIRES].
[82] S. Dittmaier, Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles, Phys. Rev.D 59 (1999) 016007 [hep-ph/9805445] [SPIRES].
[83] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys.B 306 (1988) 759 [SPIRES].
[84] F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett.B 358 (1995) 332 [hep-ph/9507237] [SPIRES].
[85] P. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, On the computation of multigluon amplitudes, Phys. Lett.B 439 (1998) 157 [hep-ph/9807207] [SPIRES].
[86] R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP09 (2008) 122 [arXiv:0808.2128] [SPIRES].
[87] A. Bredenstein, S. Dittmaier and M. Roth, Four-fermion production at gamma gamma colliders. II: radiative corrections in double-pole approximation, Eur. Phys. J.C 44 (2005) 27 [hep-ph/0506005] [SPIRES].
[88] M. Ciccolini, A. Denner and S. Dittmaier, Strong and electroweak corrections to the production of Higgs+2 jets via weak interactions at the LHC, Phys. Rev. Lett.99 (2007) 161803 [arXiv:0707.0381] [SPIRES].
[89] M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev.D 77 (2008) 013002 [arXiv:0710.4749] [SPIRES].
[90] T. Gleisberg et al., SHERPA 1.α, a proof-of-concept version, JHEP02 (2004) 056 [hep-ph/0311263] [SPIRES].
[91] Tevatron Electroweak Working Group collaboration, A combination of CDF and D0 results on the mass of the top quark, arXiv:0803.1683 [SPIRES].
[92] S. Catani, Y.L. Dokshitzer and B.R. Webber, The K−perpendicular clustering algorithm for jets in deep inelastic scattering and hadron collisions, Phys. Lett.B 285 (1992) 291 [SPIRES].
[93] G.C. Blazey et al., Run II jet physics, in Proceedings of the Physics at RUN II: QCD and Weak Boson Physics Workshop, Batavia U.S.A. November 4-6 1999, pg. 47 [hep-ex/0005012] [SPIRES].
[94] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP07 (2002) 012 [hep-ph/0201195] [SPIRES].
[95] D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP10 (2003) 046 [hep-ph/0303013] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.