×

zbMATH — the first resource for mathematics

Numerical investigation of dense-gas effects in turbomachinery. (English) Zbl 1271.76291
Summary: The present work is devoted to the numerical study of dense gas flows in turbomachinery and the assessment of their interest as working fluids in energy-conversion cycles. A structured and an unstructured dense-gas solver are used to ensure the reliability of the computed results for dense gas flows through a turbine cascade. The physical analysis is focused on the effect of the working fluid and its operating thermodynamic conditions on turbine performance.

MSC:
76N15 Gas dynamics, general
76M12 Finite volume methods applied to problems in fluid mechanics
Software:
HLLE
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Thompson, P.A., A fundamental derivative in gas dynamics, Phys fluids, 14, 1843-1849, (1971) · Zbl 0236.76053
[2] Cramer, M.S.; Kluwick, A., On the propagation of waves exhibiting both positive and negative nonlinearity, J fluid mech, 142, 9-37, (1984) · Zbl 0577.76073
[3] Cramer, M.S., Shock splitting in single-phase gases, J fluid mech, 199, 281-296, (1989) · Zbl 0659.76075
[4] Zamfirescu, C.; Guardone, A.; Colonna, P., Admissibility region for rarefaction shock waves in dense gases, J fluid mech, 599, 363-381, (2008) · Zbl 1151.76525
[5] Menikoff, R.; Plohr, B.J., The Riemann problem for fluid flow of real materials, Rev modern phys, 61, 75-155, (1989) · Zbl 1129.35439
[6] Cramer, M.S., Nonclassical dynamics of classical gases, (), 91-145 · Zbl 0723.76078
[7] Kluwick, A., Handbook of shockwaves, vol. 1, (2000), Academic Press, p. 339-411. [chapter 3.4]
[8] Thompson, P.A.; Lambrakis, K.C., Negative shock waves, J fluid mech, 60, 187-208, (1973) · Zbl 0265.76085
[9] Cramer, M.S., Negative nonlinearity in selected fluorocarbons, Phys fluids A, 1, 1894-1897, (1989)
[10] Colonna, P.; Silva, P., Dense gas thermodynamic properties of single and multi-component fluids for fluid dynamic simulations, ASME J fluids eng, 125, 414-442, (2003)
[11] Monaco, J.F.; Cramer, M.S.; Watson, L.T., Supersonic flows of dense gases in cascade configurations, J fluid mech, 330, 31-59, (1997) · Zbl 0895.76038
[12] Brown, B.P.; Argrow, B.M., Application of bethe – zel’dovich – thompson fluids in organic rankine cycles, J propul power, 16, 1118-1124, (2000)
[13] Angelino, G.D.; Paliano, P.C., Multicomponent working fluids for organics rankine cycles, Energy, 23, 449-463, (1998)
[14] Hung, T.C.; Shai, T.Y.; Wang, S.K., A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat, Energy, 22, 661-667, (1997)
[15] Larjola, J., Electricity from industrial waste heat using high-speed organic rankine cycle (ORC), Int J prod econ, 41, 227-235, (1995)
[16] Angelino, G.; Gaia, M.; Macchi, E., A review of Italian activity in the field of organic rankine cycles, (), 465-482, [10-12 September]
[17] Congedo, P.M.; Corre, C.; Cinnella, P., Airfoil shape optimization for transonic flows of bethe – zel’dovich – thompson fluids, Aiaa j, 45, 1303-1316, (2007), [AIAA Journal 2006]
[18] Fergason, S.H.; Ho, T.L.; Argrow, B.M.; Emanuel, G., Theory for producing a single-phase rarefaction shock wave in a shock tube, J fluid mech, 445, 37-54, (2001) · Zbl 1005.76051
[19] Colonna, P.; Guardone, A.; Nannan, N.R.; Zamfirescu, C., Design of the dense gas flexible asymmetric shock tube, J fluids eng, 130/034501, 6, (2008)
[20] Cinnella, P.; Congedo, P.M., Aerodynamic performance of transonic bethe – zel’dovich – thompson flows past an airfoil, Aiaa j, 43, 370-378, (2005)
[21] Brown, B.P.; Argrow, B.M., Nonclassical dense gas flows for simple geometries, Aiaa j, 36, 10, 1842-1847, (1998)
[22] Colonna, P.; Rebay, S., Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver, Int J numer methods fluids, 46, 735-765, (2004) · Zbl 1060.76586
[23] Harinck, J.; Turunen-Saaresti, T.; Colonna, P.; Rebay, S.; van-Buijtenen, J., Computational study of a high-expansion ratio radial organic rankine cycle turbine stator, J eng gas turbines power, 132, 5, 6, (2010)
[24] Harinck, J.; Colonna, P.; Guardone, A.; Rebay, S., Influence of thermodynamic models in two-dimensional flow simulations of turboexpanders, J turbomach – trans ASME, 132, 1, 17, (2010)
[25] Cinnella, P.; Congedo, P.M.; Parussini, L.; Pediroda, V., Quantification of thermodynamic uncertainties in real gas flows, Int J eng syst modell simul, 2, 1/2, 12-24, (2010)
[26] Cinnella, P.; Congedo, P.M., Numerical solver for dense gas flows, Aiaa j, 43, 2458-2461, (2005)
[27] Stryjek, R.; Vera, J.H., An improved peng – robinson equation of state for pure compounds and mixtures, Can J chem eng, 64, 323-333, (1986)
[28] Martin, J.J.; Hou, Y.C., Development of an equation of state for gases, Aiche j, 1, 142-151, (1955)
[29] Span, R.; Wagner, W., Equations of state for technical applications. I. simultaneously optimized functional forms for nonpolar and polar fluids, Int J thermophys, 24, 1-39, (2003)
[30] Colonna, P.; Nannan, N.R.; Guardone, A.; Lemmon, E.W., Multiparameter equations of state for selected siloxanes, Fluid phase equilib, 244, 193-211, (2006)
[31] Emanuel, G., Assessment of the martin – hou equation for modelling a nonclassical fluid, J fluids eng, 116, 883-884, (1996)
[32] Guardone, A.; Vigevano, L.; Argrow, B.A., Assessment of thermodynamic models for dense gas dynamics, Phys fluids, 16, 3878-3887, (2004) · Zbl 1187.76193
[33] Obernberger, I.; Thonhofer, P.; Reisenhofer, E., Description and evaluation of the new 1000kwel organic rankine cycle process integrated in the biomass CHP plant in lienz, Austria, Euroheat power, 2, 1-30, (2001)
[34] Colonna, P.; Guardone, A.; Nannan, N.R., Siloxanes: a new class of candidate bethe – zel’dovich – thompson fluids, Phys fluids, 19, 086102, (2007) · Zbl 1182.76160
[35] Jameson A, Schmidt W, Turkel E. Solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 8l-l259; June 1981.
[36] Rezgui, A.; Cinnella, P.; Lerat, A., Third-order finite volume schemes for Euler computations on curvilinear meshes, Comput fluids, 30, 875-901, (2001) · Zbl 0995.76055
[37] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev, 25, 35-61, (1983) · Zbl 0565.65051
[38] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method, J comput phys, 32, 101-136, (1979) · Zbl 1364.65223
[39] Barth TJ, Jespersen DC. The design and application of upwind schemes on unstructured meshes. AIAA Paper 89-0366; 1989.
[40] Venkatakrishnan, V., Convergence to steady-state solutions of the Euler equations on unstructured grids with limiters, J comput phys, 118, 120-130, (1995) · Zbl 0858.76058
[41] Luo, H.; Baum, J.; Löhner, R., A fast, matrix-free implicit method for compressible flows on unstructured grids, J comput phys, 146, 664-690, (1998) · Zbl 0931.76045
[42] Kiock, R.; Lehtaus, F.; Baines, N.C.; Sieverding, C.H., The transonic flow through a plane turbine cascade as measured in four European wind tunnels, J eng gas turbines power, 108, 810-819, (1996)
[43] Congedo, P.M.; Corre, C.; Martinez, J.M., Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties, Comput methods appl mech eng, 200, 216-232, (2011) · Zbl 1225.76253
[44] Hercus, S.; Cinnella, P., Robust optimization of dense gas flows under uncertain operating conditions, Comput fluids, 39, 1893-1908, (2010) · Zbl 1245.76134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.