×

zbMATH — the first resource for mathematics

A sharp interface method for high-speed multi-material flows: strong shocks and arbitrary materialpairs. (English) Zbl 1271.76255
Summary: A general framework is developed for solving high-speed and high-intensity multi-material interaction problems on adaptively refined Cartesian meshes. The framework is applicable for interfaces separating materials with very different properties and in the presence of strong shocks. A sharp interface treatment is maintained through a modified Ghost Fluid Method. The embedded boundaries are tracked and represented with level sets. A tree-based Local Mesh Refinement scheme is employed to efficiently resolve the desired physics. Results are shown for situations that cover varied combination of materials (fluids, rigid solids and deformable solids) with careful benchmarking to establish the validity and the versatility of the approach.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics
Software:
HE-E1GODF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1006/jcph.1996.0085 · Zbl 0847.76060
[2] DOI: 10.1016/0734-743X(87)90028-5
[3] DOI: 10.1016/S0021-9991(02)00055-4 · Zbl 1047.76567
[4] Arienti M., Shock and detonation modeling with Mie-Gr√ľneisen equation of state. Technical report MS 205-45 (2004)
[5] DOI: 10.1016/j.jcp.2003.08.001 · Zbl 1036.65002
[6] DOI: 10.1016/0734-743X(87)90032-7
[7] DOI: 10.1007/s001930000060 · Zbl 0980.76090
[8] DOI: 10.1016/0376-0421(84)90007-1
[9] DOI: 10.1115/1.1448524
[10] DOI: 10.1016/0021-9991(89)90035-1 · Zbl 0665.76070
[11] DOI: 10.1017/S0022112092003045
[12] DOI: 10.1017/S0022112061000019 · Zbl 0100.22103
[13] DOI: 10.1016/S0045-7825(96)01134-6 · Zbl 0892.73056
[14] DOI: 10.1088/0965-0393/11/1/201
[15] DOI: 10.1007/BF02434010 · Zbl 0859.76044
[16] DOI: 10.1080/10618560310001634221 · Zbl 1063.76652
[17] DOI: 10.1006/jfls.1997.0101
[18] DOI: 10.1007/s10573-007-0015-4
[19] DOI: 10.1006/jcph.1999.6236 · Zbl 0957.76052
[20] DOI: 10.1006/jcph.1998.6129 · Zbl 0933.76075
[21] DOI: 10.1017/S0022112090002968
[22] DOI: 10.1063/1.1495533
[23] DOI: 10.1063/1.1543649
[24] DOI: 10.1006/jcph.2001.6859 · Zbl 1028.76050
[25] DOI: 10.1016/j.jcp.2006.01.005 · Zbl 1220.76052
[26] DOI: 10.1016/j.jcp.2003.12.018 · Zbl 1107.76378
[27] DOI: 10.1098/rspa.1993.0102
[28] DOI: 10.1016/j.jcp.2006.04.018 · Zbl 1189.76351
[29] DOI: 10.1016/0013-7944(85)90052-9
[30] DOI: 10.1137/S106482759528003X · Zbl 0860.76056
[31] Khan A. S., Continuum theory of plasticity (1995) · Zbl 0856.73002
[32] DOI: 10.1007/BF00783721
[33] Ling Y., In: AIAA Paper No. 2009-1532 (2009)
[34] DOI: 10.1016/S0021-9991(03)00301-2 · Zbl 1076.76592
[35] DOI: 10.1006/jcph.1998.5937 · Zbl 0941.65082
[36] DOI: 10.1016/S0168-874X(02)00085-9 · Zbl 1100.74637
[37] DOI: 10.1002/nme.534 · Zbl 1027.74006
[38] Nourgaliev, R., Dinh, T. and Theofanous, T. The characteristic based matching (CBM) method for compressible flow in complex geometries. 41st AIAA Aerospace Sciences Meeting and Exhibit. January6–9. Reno, NV, USA AIAA Paper No. 2003-0247 · Zbl 1136.76396
[39] DOI: 10.1016/j.jcp.2005.08.028 · Zbl 1136.76396
[40] DOI: 10.1016/0021-9991(88)90002-2 · Zbl 0659.65132
[41] DOI: 10.1016/j.jcp.2005.03.018 · Zbl 1329.76301
[42] DOI: 10.1016/S0924-0136(98)00125-3
[43] DOI: 10.1016/S0749-6419(00)00097-8 · Zbl 1035.74012
[44] DOI: 10.1017/S0022112096007069 · Zbl 0877.76046
[45] DOI: 10.1016/j.compfluid.2005.05.001 · Zbl 1177.76187
[46] DOI: 10.1016/0734-743X(87)90068-6
[47] DOI: 10.1007/s00193-007-0109-7 · Zbl 1195.76244
[48] Sambasivan, S. and Udaykumar, H. Sharp interface Cartesian grid method for compressible multiphase flows. 46th AIAA Aerospace Sciences meeting and exhibit,Orlando, Florida, AIAA Paper No. 2008-1234.
[49] DOI: 10.2514/1.43148
[50] DOI: 10.2514/1.43153
[51] DOI: 10.1080/713665233 · Zbl 1046.80505
[52] DOI: 10.1016/0021-9991(89)90222-2 · Zbl 0674.65061
[53] Simo J., Constitutive laws for engineering materials: theory and applications (1987)
[54] Simo J., Computational inelasticity (2000) · Zbl 0934.74003
[55] DOI: 10.1007/s00193-004-0235-4 · Zbl 1178.76222
[56] Sun M., Numerical and experimental investigation of shock wave interactions with bodies (1998)
[57] Takayama, K. and Itoh, K. Unsteady drag over cylinders and aerofoils in transonic shock tube flows. Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes. 28 July–2 August, Berkeley, California. Edited by: Bershader, D. and Hanson, R. pp.479–485.
[58] DOI: 10.1098/rspa.1948.0081
[59] DOI: 10.1098/rspa.1934.0004
[60] Toro E., Riemann solvers and numerical method for fluid dynamics – a practical introduction (1997) · Zbl 0888.76001
[61] DOI: 10.1016/j.jcp.2003.07.023 · Zbl 1109.74376
[62] DOI: 10.1016/0899-8248(90)90002-R
[63] DOI: 10.1007/BF00512588 · Zbl 0793.73102
[64] DOI: 10.1137/0916048 · Zbl 0831.35104
[65] DOI: 10.1137/0912010 · Zbl 0714.73028
[66] DOI: 10.1016/S0021-9991(03)00027-5 · Zbl 1047.76558
[67] Vanden K. J., Technical Memorandum, AFRL, Eglin AFB, FL (1998)
[68] DOI: 10.1016/j.jcp.2008.03.005 · Zbl 1388.76189
[69] DOI: 10.1201/9780203491997 · Zbl 1057.74002
[70] DOI: 10.1080/713665233 · Zbl 1046.80505
[71] DOI: 10.1007/PL00004050 · Zbl 0967.76523
[72] DOI: 10.1007/PL00004050 · Zbl 0967.76523
[73] DOI: 10.1098/rspa.2002.1045 · Zbl 1116.76382
[74] DOI: 10.1002/nme.1620380411 · Zbl 0823.73074
[75] Zukas J. A., Impact dynamics (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.