# zbMATH — the first resource for mathematics

A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. (English) Zbl 1271.74418
Summary: This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.

##### MSC:
 74S05 Finite element methods applied to problems in solid mechanics 74A45 Theories of fracture and damage
XFEM
Full Text:
##### References:
 [1] T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” International Journal for Numerical Methods in Engineering, vol. 45, no. 5, pp. 601-620, 1999. · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S [2] A. Hansbo and P. Hansbo, “A finite element method for the simulation of strong and weak discontinuities in solid mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 33-35, pp. 3523-3540, 2004. · Zbl 1068.74076 · doi:10.1016/j.cma.2003.12.041 [3] J. Mergheim, E. Kuhl, and P. Steinmann, “A finite element method for the computational modelling of cohesive cracks,” International Journal for Numerical Methods in Engineering, vol. 63, no. 2, pp. 276-289, 2005. · Zbl 1118.74349 · doi:10.1002/nme.1286 [4] J.-H. Song, P. M. A. Areias, and T. Belytschko, “A method for dynamic crack and shear band propagation with phantom nodes,” International Journal for Numerical Methods in Engineering, vol. 67, no. 6, pp. 868-893, 2006. · Zbl 1113.74078 · doi:10.1002/nme.1652 [5] P. M. A. Areias and T. Belytschko, “A comment on the article “A finite element method for simulation of strong and weak discontinuities in solid mechanics”,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 9-12, pp. 1275-1276, 2006. · Zbl 1378.74062 · doi:10.1016/j.cma.2005.03.006 [6] J. Shi, D. Chopp, J. Lua, N. Sukumar, and T. Belytschko, “Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions,” Engineering Fracture Mechanics, vol. 77, no. 14, pp. 2840-2863, 2010. · doi:10.1016/j.engfracmech.2010.06.009 [7] M. Duflot, “Industrial applications of XFEM for 3D crack propagation with Morfeo/Crack and Abaqus,” in ECCOMAS Thematic Conference on XFEM, Cardiff, UK, June 2011. [8] T. Menouillard, J. Réthoré, A. Combescure, and H. Bung, “Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM),” International Journal for Numerical Methods in Engineering, vol. 68, no. 9, pp. 911-939, 2006. · Zbl 1128.74045 · doi:10.1002/nme.1718 [9] T. Menouillard, J. Réthoré, N. Moës, A. Combescure, and H. Bung, “Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation,” International Journal for Numerical Methods in Engineering, vol. 74, no. 3, pp. 447-474, 2008. · Zbl 1159.74432 · doi:10.1002/nme.2180 [10] T. Chau-Dinh, G. Zi, P.-S. Lee, T. Rabczuk, and J.-H. Song, “Phantom-node method for shell models with arbitrary cracks,” Computers and Structures, vol. 92-93, pp. 242-246, 2012. · doi:10.1016/j.compstruc.2011.10.021 [11] P. Laborde, J. Pommier, Y. Renard, and M. Salaün, “High-order extended finite element method for cracked domains,” International Journal for Numerical Methods in Engineering, vol. 64, no. 3, pp. 354-381, 2005. · Zbl 1181.74136 · doi:10.1002/nme.1370 [12] E. Béchet, H. Minnebo, N. Moës, and B. Burgardt, “Improved implementation and robustness study of the X-FEM for stress analysis around cracks,” International Journal for Numerical Methods in Engineering, vol. 64, no. 8, pp. 1033-1056, 2005. · Zbl 1122.74499 · doi:10.1002/nme.1386 [13] G. Ventura, R. Gracie, and T. Belytschko, “Fast integration and weight function blending in the extended finite element method,” International Journal for Numerical Methods in Engineering, vol. 77, no. 1, pp. 1-29, 2009. · Zbl 1195.74201 · doi:10.1002/nme.2387 [14] R. Gracie, H. Wang, and T. Belytschko, “Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods,” International Journal for Numerical Methods in Engineering, vol. 74, no. 11, pp. 1645-1669, 2008. · Zbl 1195.74175 · doi:10.1002/nme.2217 [15] S. P. A. Bordas, T. Rabczuk, N.-X. Hung et al., “Strain smoothing in FEM and XFEM,” Computers and Structures, vol. 88, no. 23-24, pp. 1419-1443, 2010. · doi:10.1016/j.compstruc.2008.07.006 [16] T. Rabczuk, G. Zi, A. Gerstenberger, and W. A. Wall, “A new crack tip element for the phantom-node method with arbitrary cohesive cracks,” International Journal for Numerical Methods in Engineering, vol. 75, no. 5, pp. 577-599, 2008. · Zbl 1195.74193 · doi:10.1002/nme.2273 [17] G. R. Liu, K. Y. Dai, and T. T. Nguyen, “A smoothed finite element method for mechanics problems,” Computational Mechanics, vol. 39, no. 6, pp. 859-877, 2007. · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4 [18] G. R. Liu, T. T. Nguyen, K. Y. Dai, and K. Y. Lam, “Theoretical aspects of the smoothed finite element method (SFEM),” International Journal for Numerical Methods in Engineering, vol. 71, no. 8, pp. 902-930, 2007. · Zbl 1194.74432 · doi:10.1002/nme.1968 [19] N. Nguyen-Thanh, T. Rabczuk, H. Nguyen-Xuan, and S. P. A. Bordas, “A smoothed finite element method for shell analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 2, pp. 165-177, 2008. · Zbl 1194.74453 · doi:10.1016/j.cma.2008.05.029 [20] S. P. A. Bordas and S. Natarajan, “On the approximation in the smoothed finite element method (SFEM),” International Journal for Numerical Methods in Engineering, vol. 81, no. 5, pp. 660-670, 2010. · Zbl 1183.74261 · doi:10.1002/nme.2713 [21] T. Rabczuk, P. M. A. Areias, and T. Belytschko, “A meshfree thin shell method for non-linear dynamic fracture,” International Journal for Numerical Methods in Engineering, vol. 72, no. 5, pp. 524-548, 2007. · Zbl 1194.74537 · doi:10.1002/nme.2013 [22] T. Rabczuk and T. Belytschko, “Application of particle methods to static fracture of reinforced concrete structures,” International Journal of Fracture, vol. 137, no. 1-4, pp. 19-49, 2006. · Zbl 1197.74175 · doi:10.1007/s10704-005-3075-z [23] T. Rabczuk and T. Belytschko, “A three-dimensional large deformation meshfree method for arbitrary evolving cracks,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 29-30, pp. 2777-2799, 2007. · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020 [24] S. Bordas, P. V. Nguyen, C. Dunant, A. Guidoum, and H. Nguyen-Dang, “An extended finite element library,” International Journal for Numerical Methods in Engineering, vol. 71, no. 6, pp. 703-732, 2007. · Zbl 1194.74367 · doi:10.1002/nme.1966 [25] G. R. Liu, T. Nguyen-Thoi, and K. Y. Lam, “An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids,” Journal of Sound and Vibration, vol. 320, no. 4-5, pp. 1100-1130, 2009. · doi:10.1016/j.jsv.2008.08.027 [26] G. R. Liu, “A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I theory,” International Journal for Numerical Methods in Engineering, vol. 81, no. 9, pp. 1093-1126, 2010. · Zbl 1183.74358 · doi:10.1002/nme.2719 [27] L. Chen, T. Rabczuk, S. P. A. Bordas, G. R. Liu, K. Y. Zeng, and P. Kerfriden, “Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth,” Computer Methods in Applied Mechanics and Engineering, vol. 209-212, pp. 250-265, 2012. · Zbl 1243.74170 · doi:10.1016/j.cma.2011.08.013 [28] N. Vu-Bac, H. Nguyen-Xuan, L. Chen et al., “A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis,” CMES: Computer Modeling in Engineering and Sciences, vol. 73, no. 4, pp. 331-355, 2011. · Zbl 1231.74444 · doi:10.3970/cmes.2011.073.331 [29] F. Z. Li, C. F. Shih, and A. Needleman, “A comparison of methods for calculating energy release rates,” Engineering Fracture Mechanics, vol. 21, no. 2, pp. 405-421, 1985. [30] B. Moran and C. F. Shih, “Crack tip and associated domain integrals from momentum and energy balance,” Engineering Fracture Mechanics, vol. 27, no. 6, pp. 615-642, 1987. [31] S. S. Wang, J. F. Yau, and H. T. Corten, “A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity,” International Journal of Fracture, vol. 16, no. 3, pp. 247-259, 1980. · Zbl 0463.73103 · doi:10.1007/BF00013381 [32] F. Erdogan and G. Sih, “On the crack extension in sheets under plane loading and transverse shear,” Journal Basic Engineering, vol. 85, no. 6, pp. 519-527, 1963. [33] A. Menk and S. Bordas, “Crack growth calculations in solder joints based on microstructural phenomena with X-FEM,” Computational Materials Science, vol. 50, no. 3, pp. 1145-1156, 2011. · doi:10.1016/j.commatsci.2010.11.014 [34] D. F. Li, C. F. Li, S. Q. Shu, Z. X. Wang, and J. Lu, “A fast and accurate analysis of the interacting cracks in linear elastic solids,” International Journal of Fracture, vol. 151, pp. 169-185, 2008. · Zbl 1167.74036 · doi:10.1007/s10704-008-9249-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.