zbMATH — the first resource for mathematics

Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue. (English) Zbl 1271.74319
Summary: This manuscript proposes a novel, efficient finite element solution technique for the computational simulation of cardiac electrophysiology. We apply a two-parameter model that is characterized through a fast action potential and a slow recovery variable. The former is introduced globally as a nodal degree of freedom, whereas the latter is treated locally as internal variable on the integration point level. This particular discretization is extremely efficient and highly modular since different cardiac cell models can be incorporated straightforwardly through only minor local modifications on the integration point level. In this manuscript, we illustrate the algorithm in terms of the Aliev-Panfilov model for cardiomyocytes. To ensure unconditional stability, a backward Euler scheme is applied to discretize the evolution equation for both the action potential and the recovery variable in time. To increase robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme and illustrate the consistent linearization of the weak form of the excitation problem. The proposed algorithm is illustrated by means of two- and three-dimensional examples of re-entrant spiral and scroll waves characteristic of cardiac arrhythmias in atrial and ventricular fibrillation.

74L15 Biomechanical solid mechanics
92C10 Biomechanics
Full Text: DOI
[1] American Heart Association.: Heart Disease and Stroke Statistics–2008 Update. American Heart Association, Dallas (2008)
[2] Aliev R.R., Panfilov A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7, 293–301 (1996) · doi:10.1016/0960-0779(95)00089-5
[3] Beeler G.W., Reuter H.: Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. 268, 177–210 (1977)
[4] Berne R.M., Levy M.N.: Cardiovascular Physiology. Mosby, St. Louis (2001)
[5] Bers M.D.: Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer, Dordrecht (2001)
[6] Clayton R.H., Panfilov A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96, 19–43 (2008) · doi:10.1016/j.pbiomolbio.2007.07.004
[7] Fenton F.H., Karma A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998) · Zbl 1069.92503 · doi:10.1063/1.166311
[8] Fenton F.H., Cherry E.M., Hastings H.M., Evans S.J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852–892 (2002) · doi:10.1063/1.1504242
[9] FitzHugh R.: Impulses and physiological states in theoretical models of nerve membranes. Biophys. J. 1, 445–466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[10] Ganong W.F.: Review of Medical Physiology. McGraw-Hill, NY (2003)
[11] Göktepe S., Kuhl E.: Computational modeling of cardiac electrophysiology: a novel finite element approach. Int. J. Numer. Methods Eng. 79, 156–178 (2009) · Zbl 1171.92310 · doi:10.1002/nme.2571
[12] Göktepe, S., Kuhl, E.: Electromechanics of the heart–a unified approach to the strongly coupled excitation-contraction problem. Comput. Mech. (2009, in press) · Zbl 1183.78031
[13] Hodgkin A.L., Huxley A.F.: A quantitative description of membrane current and its application to conductance and excitation in nerve. J. Physiol. 117, 500–544 (1952)
[14] Hunter P.J., McCulloch A.D., ter Keurs H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289–331 (1998) · doi:10.1016/S0079-6107(98)00013-3
[15] Keener J., Sneyd J.: Mathematical Physiology. Springer, Berlin (2004) · Zbl 0913.92009
[16] Klabunde R.E.: Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins, Philadelphia (2005)
[17] Kotikanyadanam, M., Göktepe, S., Kuhl, E.: Computational modeling of electrocardiograms–a finite element approach towards cardiac excitation. Commun. Numer. Methods Eng. doi: 10.1002/cnm.1273 · Zbl 1187.92062
[18] Luo C., Rudy Y.: A model of the ventricular cardiac action potential. Depolarization, repolarization, and their changes. Circ. Res. 68, 1501–1526 (1991) · doi:10.1161/01.RES.68.6.1501
[19] Mines G.R.: On the dynamic equilibrium of the heart. J. Physiol. 46, 349–383 (1913)
[20] Nagumo J., Arimoto S., Yoshizawa S.: Active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1962)
[21] Nash M.P., Panfilov A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhytmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004) · doi:10.1016/j.pbiomolbio.2004.01.016
[22] Noble D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. 160, 317–352 (1962)
[23] Opie L.H.: Heart Physiology: From Cell to Circulation. Lippincott Williams & Wilkins, Philadelphia (2003)
[24] Panfilov A.V., Nash M.P.: Self-organized pacemakers in a coupled reaction-diffusion-mechanics system. Phys. Rev. Lett. 95, 258104-1–258014-4 (2005)
[25] Panfilov A.V., Keldermann R.H., Nash M.P.: Drift and breakup of spiral waves in reaction-diffusion-mechanics systems. Proc. Natl. Acad. Sci. USA 104, 7922–7926 (2007) · doi:10.1073/pnas.0701895104
[26] Plonsey R., Barr R.C.: Bioelectricity. A Quantitative Approach. Springer, Berlin (2007) · Zbl 1131.92005
[27] Rogers J.M., McCulloch A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994) · doi:10.1109/10.310090
[28] Rogers J.M., McCulloch A.D.: Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. J. Cardiovasc. Electrophysiol. 5, 496–509 (1994) · doi:10.1111/j.1540-8167.1994.tb01290.x
[29] Rogers J.M.: Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Chaos 12, 779–787 (2002) · doi:10.1063/1.1483956
[30] Sachse F.B.: Computational Cardiology. Springer, Berlin (2004) · Zbl 1051.92025
[31] Sermesant M., Rhode K., Sanchez-Ortiz G.I., Camara O., Andriantsimiavona R., Hegde S., Rueckert D., Lambiase P., Bucknall C., Rosenthal E., Delingette H., Hill D.L.G., Ayache N., Razavi R.: Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging. Med. Image Anal. 9, 467–480 (2005) · doi:10.1016/j.media.2005.05.003
[32] Sermesant M., Delingette H., Ayache N.: An electromechanical model of the heart for image analysis and simulation. IEEE Trans. Med. Imaging 25, 612–625 (2006) · doi:10.1109/TMI.2006.872746
[33] Sermesant M., Peyrat J.-M., Chinchapatnam P., Billet F., Mansi T., Rhode K., Delingette H., Razavi R., Ayache N.: Towards patient-specific myocardial models of the heart. Heart Fail. Clin. 4, 289–301 (2008) · doi:10.1016/j.hfc.2008.02.014
[34] ten Tuscher K.H.W.J., Panfilov A.V.: Modelling of the ventricular conduction system. Prog. Biophys. Mol. Biol. 96, 152–170 (2008) · doi:10.1016/j.pbiomolbio.2007.07.026
[35] Zheng Z., Croft J., Giles W., Mensah G.: Sudden cardiac death in the United States. Circulation 104, 2158–2163 (2001) · doi:10.1161/hc4301.098254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.