×

zbMATH — the first resource for mathematics

The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. (English) Zbl 1271.65105
Summary: In this article the Legendre multiwavelet basis with the aid of a collocation method has been applied to give the approximate solution for the fractional optimal control problems (FOCPs). The properties of the Legendre multiwavelet are presented. These properties together with the collocation method are then utilized to reduce the problem to the solution of an algebraic system. Numerical results and a comparison with the exact solution in the cases when we have an exact solution are given to demonstrate the applicability and efficiency of the new method.

MSC:
65K10 Numerical optimization and variational techniques
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s11071-004-3764-6 · Zbl 1121.70019 · doi:10.1007/s11071-004-3764-6
[2] Agrawal OP, Journal of Vibration and Control 13 pp 1269– (2007) · Zbl 1182.70047 · doi:10.1177/1077546307077467
[3] Baleanu D, Communications in Non-linear Science and Numerical Simulation 14 pp 2520– (2009) · doi:10.1016/j.cnsns.2008.10.002
[4] Baleanu D, Physica Scripta 136 pp 014006– (2009) · doi:10.1088/0031-8949/2009/T136/014006
[5] Beylkin G, Communications in Pure and Applied Mathematics 44 pp 141– (1991) · Zbl 0722.65022 · doi:10.1002/cpa.3160440202
[6] Chawla S, Journal of Computational and Applied Mathematics 114 pp 81– (2000) · Zbl 0997.92039 · doi:10.1016/S0377-0427(99)00290-3
[7] Chui CK, Wavelets: A Mathematical Tool for Signal Analysis (1997) · Zbl 0903.94007 · doi:10.1137/1.9780898719727
[8] Defterli O, Computers and Mathematics with Applications 59 pp 1630– (2010) · Zbl 1189.49044 · doi:10.1016/j.camwa.2009.08.005
[9] Dehghan M, Numerical Methods for Partial Differential Equations 26 pp 448– (2010)
[10] Dehghan M, Zeitschrift für Naturforschung 65 pp 935– (2010)
[11] Dehghan M, Progress In Electromagnetics Research, PIER 78 pp 361– (2008) · doi:10.2528/PIER07090403
[12] Dehghan M, International Journal for Numerical Methods in Biomedical Engineering 26 pp 705– (2010)
[13] Dehghan M, Numerical Methods for Partial Differential Equations 26 pp 702– (2010)
[14] El-Borai Mahmoud M, International Journal of Applied Mathematics and Mechanics 4 pp 13– (2008)
[15] Gu JS, International Journal of Systems Science 27 pp 623– (1996) · Zbl 0875.93116 · doi:10.1080/00207729608929258
[16] Jafari Samimi A, Applied Mathematics and Computation 172 pp 198– (2006) · Zbl 1137.91551 · doi:10.1016/j.amc.2005.01.146
[17] Kilbas AA, Theory and Application of Fractional Differential Equations (2006)
[18] Ming Q, International Journal of Numerical Methods in Engineering 39 pp 2921– (1996) · Zbl 0884.76058 · doi:10.1002/(SICI)1097-0207(19960915)39:17<2921::AID-NME983>3.0.CO;2-D
[19] Momani S, Applied Mathematics and Computation 182 pp 754– (2006) · Zbl 1107.65120 · doi:10.1016/j.amc.2006.04.041
[20] Rabei EM, Journal of Mathematical Analysis and Applications 327 pp 891– (2007) · Zbl 1104.70012 · doi:10.1016/j.jmaa.2006.04.076
[21] Saadatmandi A, Physics Letters A 372 pp 4037– (2008) · Zbl 1220.49027 · doi:10.1016/j.physleta.2008.03.038
[22] Saadatmandi A, Computers and Mathematics with Applications 59 pp 1326– (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[23] Saadatmandi A, Journal of Vibration and Control (2011)
[24] Samko SG, Fractional Integrals and Derivatives Theory and Applications (1993)
[25] Sethi S, Optimal Control Theory: Applications to Management Science and Economics (2000) · Zbl 0998.49002
[26] Tatari M, Physics Letters A 362 pp 401– (2007) · Zbl 1197.65112 · doi:10.1016/j.physleta.2006.09.101
[27] DOI: 10.1016/j.camwa.2009.08.006 · Zbl 1189.49045 · doi:10.1016/j.camwa.2009.08.006
[28] Wu JL, Applied Mathematics and Computation 214 pp 31– (2009) · Zbl 1169.65127 · doi:10.1016/j.amc.2009.03.066
[29] Yousefi SA, Numerical Methods for Partial Differential Equations 26 pp 535– (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.