×

Krichever formal groups. (English. Russian original) Zbl 1271.55005

Funct. Anal. Appl. 45, No. 2, 99-116 (2011); translation from Funkts. Anal. Prilozh. 45, No. 2, 23-44 (2011).
Summary: On the basis of the general Weierstrass model of the cubic curve with parameters \(\mu=(\mu_1,\mu_2,\mu_3,\mu_4,\mu_6)\), the explicit form of the formal group that corresponds to the Tate uniformization of this curve is described. This formal group is called the general elliptic formal group. The differential equation for its exponential is introduced and studied. As a consequence, results on the elliptic Hirzebruch genus with values in \(\mathbb Z[\mu]\) are obtained.
The notion of the universal Krichever formal group over the ring \(\mathcal A_{\mathrm{Kr}}\) is introduced; its exponential is determined by the Baker-Akhiezer function \(\Phi(t)=\Phi(t;\tau,g_2,g_3)\), where \(\tau\) is a point on the elliptic curve with Weierstrass parameters \((g_2,g_3)\). As a consequence, results on the Krichever genus which takes values in the ring \(\mathcal A_{\mathrm{Kr}}\otimes\mathbb Q\) of polynomials in four variables are obtained. Conditions necessary and sufficient for an elliptic formal group to be a Krichever formal group are found.
A quasiperiodic function \(\Psi(t)=\Psi(t;v,w,\mu)\) is introduced; its logarithmic derivative defines the exponential of the general elliptic formal group law, where \(v\) and \(w\) are points on the elliptic curve with parameters \(\mu\). For \(w\neq \pm v\), this function has the branching points \(t=v\) and \(t=-v\), and for \(w=\pm v\), it coincides with \(\Phi(t;v,g_2,g_3)\) and becomes meromorphic. An addition theorem for the function \(\Psi(t)\) is obtained. According to this theorem, the function \(\Psi(t)\) is the common eigenfunction of differential operators of orders 2 and 3 with doubly periodic coefficients.

MSC:

55N22 Bordism and cobordism theories and formal group laws in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. M. Buchstaber, ”The Chern-Dold Character in Cobordisms, I.,” Mat. Sb., 83:4 (1970), 575–595; English transl.: Math. USSR Sb., 12:4 (1970), 573–594.
[2] V. M. Buchstaber, A. S. Mishchenko, and S. P. Novikov, ”Formal groups and their role in the apparatus of algebraic topology,” Uspekhi Mat. Nauk, 26:2 (1971), 131–154; English transl.: Russian Math. Surveys, 26:2 (1971), 63–90. · Zbl 0224.57006
[3] V. M. Buchstaber, ”Functional equations associated with addition theorems for elliptic functions, and two-valued algebraic groups,” Uspekhi Mat. Nauk, 45:3 (1990), 185–186; English transl.: Russian Math. Surveys, 45:3 (1990), 213–215.
[4] V. M. Buchstaber and N. Ray, ”Toric manifolds and complex cobordisms,” Uspekhi Mat. Nauk, 53:2 (1998), 139–140; English transl.: Russian Math. Surveys, 53:2 (1998), 371–373. · Zbl 0967.57030 · doi:10.4213/rm11
[5] V. M. Buchstaber, T. E. Panov, and N. Ray, ”Spaces of polytopes and cobordism of quasitoric manifolds,” Moscow Math. J., 7:2 (2007), 219–242; http://arxiv.org/abs/math/0609346 . · Zbl 1176.55004
[6] V. M. Buchstaber, ”The general Krichever genus,” Uspekhi Mat. Nauk, 65:5(395) (2010), 187–188; English transl.: Russian Math. Surveys, 65:5(395) (2010), 979–981. · Zbl 1226.55004 · doi:10.4213/rm9380
[7] V. M. Buchstaber and E. Yu. Bunkova, Elliptic formal group laws, integral Hirzebruch genera and Krichever genera, http://arxiv.org/abs/1010.0944 .
[8] V. M. Buchstaber and E. Yu. Bunkova, ”Addition theorems, formal group laws and integrable systems,” in: XXIX Workshop on Geometrical Methods in Physics, AIP Conference Proceedings, vol. 1307, 2010, 33–44. · Zbl 1253.37071 · doi:10.1063/1.3527423
[9] V. M. Buchstaber and D. V. Leykin, ”Addition laws on Jacobian varieties of plane algebraic curves,” Trudy Mat. Inst. Steklova, 251 (2005), 54–126; English transl.: Proc. Math. Inst. Steklov, 251:4 (2005), 49–120.
[10] E. Yu. Bunkova, ”Addition theorem for a deformed Baker-Akhiezer function,” Uspekhi Mat. Nauk, 65:6(396) (2010), 183–184; English transl.: Russian Math. Surveys, 65:6 (2010), 1175–1177. · Zbl 1213.30067 · doi:10.4213/rm9398
[11] M. Hazewinkel, Formal Groups and Applications, Academic Press, New York-San Francisco-London, 1978. · Zbl 0454.14020
[12] F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. Int. Cong. Math. 1958, Cambridge Univ. Press, Cambridge, 1960.
[13] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Springer-Verlag, Berlin-New York-Heidelberg, 1966. · Zbl 0138.42001
[14] F. Hirzebruch, Elliptic genera of level N for complex manifolds, Preprint MPI 88-24.
[15] A. W. Knapp, Elliptic Curves, Math. Notes, vol. 40, Princeton Univ. Press, Princeton, NJ, 1992. · Zbl 0804.14013
[16] I. M. Krichever, ”Formal groups and the Atiyah-Hirzebruch formula,” Izv. Akad. Nauk SSSR, Ser. Math., 38:6 (1974), 1289–1304; English transl.: Math. USSR Izv., 8:6 (1974), 1271–1285.
[17] I. M. Krichever, ”Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles,” Funkts. Anal. Prilozhen., 14:4 (1980), 45–54; English transl.: Functional Anal. Appl., 14:4 (1980), 282–290. · Zbl 0462.35080
[18] I. M. Krichever, ”Generalized elliptic genera and Baker-Akhiezer functions,” Mat. Zametki, 47:2 (1990), 34–45; English transl.: Math. Notes, 47:2 (1990), 132–142. · Zbl 0692.57014
[19] M. Lazard, ”Sur les groupes de Lie formels ‘a un param‘etre,” Bull. Soc. Math. France, 83 (1955), 251–274. · Zbl 0068.25703
[20] J. Milnor, ”On the cobordism ring {\(\Omega\)}* and complex analogue, Part I,” Amer. J. Math., 82:3 (1960), 505–521. · Zbl 0095.16702 · doi:10.2307/2372970
[21] S. P. Novikov, ”Some problems in the topology of manifolds connected with the theory of Thom spaces,” Dokl. Akad. Nauk SSSR, 132:5 (1960), 1031–1034; English transl.: Soviet Math. Dokl., 1 (1960), 717–719. · Zbl 0094.35902
[22] S. P. Novikov, ”Homotopy properties of Thom complexes,” Mat. Sb., 57(99):4 (1962), 407–442. · Zbl 0193.51801
[23] S. P. Novikov, ”The methods of algebraic topology from the viewpoint of cobordism theory,” Izv. Akad. Nauk SSSR, Ser. Mat., 31:4 (1967), 855–951; English transl.: Math. USSR Izv., 1:4 (1967), 827–913.
[24] S. P. Novikov, ”Adams operators and fixed points,” Izv. Akad. Nauk SSSR, Ser. Mat., 32:6 (1968), 1245–1263; English transl.: Izv. Akad. Nauk SSSR, 2:6 (1968), 1193–1211.
[25] S. Ochanine, ”Sur les genres multiplicatifs définis par des intégrales elliptiques,” Topology, 26:2 (1987), 143–151. · Zbl 0626.57014 · doi:10.1016/0040-9383(87)90055-3
[26] D. Quillen, ”On the formal group laws of unoriented and complex cobordism theory,” Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298. · Zbl 0199.26705 · doi:10.1090/S0002-9904-1969-12401-8
[27] N. P. Smart, ”The Hessian form of an elliptic curve,” in: CHES 2001, Lecture Notes in Comput. Sci., vol. 2162, Springer-Verlag, Berlin, 2001, 118–125. · Zbl 1021.94522
[28] R. E. Stong, Notes on Cobordism Theory, Princeton Univ. Press, Princeton, NJ, 1968. · Zbl 0181.26604
[29] J. T. Tate, ”The arithmetic of elliptic curves,” Invent. Math., 23:3–4 (1974), 179–206. · Zbl 0296.14018 · doi:10.1007/BF01389745
[30] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Reprint of 4th (1927) ed., Cambridge Univ. Press, Cambridge, 1996. · JFM 53.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.