×

zbMATH — the first resource for mathematics

Direct photon production with effective field theory. (English) Zbl 1270.81215
Summary: The production of hard photons in hadronic collisions is studied using Soft-Collinear Effective Theory (SCET). This is the first application of SCET to a physical, observable cross section involving energetic partons in more than two directions. A factorization formula is derived which involves a non-trivial interplay of the angular dependence in the hard and soft functions, both quark and gluon jet functions, and multiple partonic channels. The relevant hard, jet and soft functions are computed to one loop and their anomalous dimensions are determined to three loops. The final resummed inclusive direct photon distribution is valid to next-to-next-to-leading logarithmic order (NNLL), one order beyond previous work. The result is improved by including non-logarithmic terms and photon isolation cuts through matching, and compared to Tevatron data and to fixed order results at the Tevatron and the LHC. The resummed cross section has a significantly smaller theoretical uncertainty than the next-to-leading fixed-order result, particularly at high transverse momentum.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81T17 Renormalization group methods applied to problems in quantum field theory
81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aurenche, P.; Douiri, A.; Baier, R.; Fontannaz, M.; Schiff, D., Prompt photon production at large \(p\)_{\(T\)} in QCD beyond the leading order, Phys. Lett., B 140, 87, (1984)
[2] Aurenche, P.; Baier, R.; Fontannaz, M.; Schiff, D., Prompt photon production at large \(p\)_{\(T\)} scheme invariant QCD predictions and comparison with experiment, Nucl. Phys., B 297, 661, (1988)
[3] Gordon, LE; Vogelsang, W., Polarized and unpolarized prompt photon production beyond the leading order, Phys. Rev., D 48, 3136, (1993)
[4] Catani, S.; Fontannaz, M.; Guillet, JP; Pilon, E., Cross-section of isolated prompt photons in hadron hadron collisions, JHEP, 05, 028, (2002)
[5] Laenen, E.; Oderda, G.; Sterman, G., Resummation of threshold corrections for single particle inclusive cross-sections, Phys. Lett., B 438, 173, (1998)
[6] Appell, D.; Sterman, G.; Mackenzie, PB, Soft gluons and the normalization of the Drell-Yan cross-section, Nucl. Phys., B 309, 259, (1988)
[7] Catani, S.; Mangano, ML; Nason, P., Sudakov resummation for prompt photon production in hadron collisions, JHEP, 07, 024, (1998)
[8] Catani, S.; Mangano, ML; Nason, P.; Oleari, C.; Vogelsang, W., Sudakov resummation effects in prompt photon hadroproduction, JHEP, 03, 025, (1999)
[9] Kidonakis, N.; Owens, JF, Soft-gluon resummation and NNLO corrections for direct photon production, Phys. Rev., D 61, 094004, (2000)
[10] Kidonakis, N.; Owens, JF, Next-to-next-to-leading-order soft-gluon corrections in direct photon production, Int. J. Mod. Phys., A 19, 149, (2004)
[11] Bauer, CW; Fleming, S.; Pirjol, D.; Stewart, IW, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev., D 63, 114020, (2001)
[12] Bauer, CW; Pirjol, D.; Stewart, IW, Soft-collinear factorization in effective field theory, Phys. Rev., D 65, 054022, (2002)
[13] Beneke, M.; Chapovsky, AP; Diehl, M.; Feldmann, T., Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys., B 643, 431, (2002)
[14] Bauer, CW; Fleming, S.; Pirjol, D.; Rothstein, IZ; Stewart, IW, Hard scattering factorization from effective field theory, Phys. Rev., D 66, 014017, (2002)
[15] Manohar, AV, Deep inelastic scattering as x → 1 using soft-collinear effective theory, Phys. Rev., D 68, 114019, (2003)
[16] Becher, T.; Neubert, M., Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett., 97, 082001, (2006)
[17] Becher, T.; Neubert, M.; Pecjak, BD, Factorization and momentum-space resummation in deep- inelastic scattering, JHEP, 01, 076, (2007)
[18] Chen, P-y; Idilbi, A.; Ji, X-d, QCD factorization for deep-inelastic scattering at large bjorken \(x\)_{\(B\)} ≈ 1 − \(O\)(λ_{QCD}/\(Q\)), Nucl. Phys, B 763, 183, (2007)
[19] Idilbi, A.; Ji, X-d, Threshold resummation for Drell-Yan process in soft- collinear effective theory, Phys. Rev., D 72, 054016, (2005)
[20] Becher, T.; Neubert, M.; Xu, G., Dynamical threshold enhancement and resummation in Drell-Yan production, JHEP, 07, 030, (2008)
[21] Idilbi, A.; Ji, X-d; Ma, J-P; Yuan, F., Threshold resummation for Higgs production in effective field theory, Phys. Rev., D 73, 077501, (2006)
[22] Ahrens, V.; Becher, T.; Neubert, M.; Yang, LL, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev., D 79, 033013, (2009)
[23] Ahrens, V.; Becher, T.; Neubert, M.; Yang, LL, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J., C 62, 333, (2009)
[24] Lee, C.; Sterman, G., Momentum flow correlations from event shapes: factorized soft gluons and soft-collinear effective theory, Phys. Rev., D 75, 014022, (2007)
[25] Fleming, S.; Hoang, AH; Mantry, S.; Stewart, IW, Jets from massive unstable particles: top-mass determination, Phys. Rev., D 77, 074010, (2008)
[26] Schwartz, MD, Resummation and NLO matching of event shapes with effective field theory, Phys. Rev., D 77, 014026, (2008)
[27] Bauer, CW; Fleming, SP; Lee, C.; Sterman, G., Factorization of \(e\)\^{}{+}\(e\)\^{}{−} event shape distributions with hadronic final states in soft collinear effective theory, Phys. Rev., D 78, 034027, (2008)
[28] Becher, T.; Schwartz, MD, A precise determination of α_{\(s\)} from LEP thrust data using effective field theory, JHEP, 07, 034, (2008)
[29] Hornig, A.; Lee, C.; Ovanesyan, G., Effective predictions of event shapes: factorized, resummed and gapped angularity distributions, JHEP, 05, 122, (2009)
[30] Chiu, J-y; Golf, F.; Kelley, R.; Manohar, AV, Electroweak corrections in high energy processes using effective field theory, Phys. Rev., D 77, 053004, (2008)
[31] Chiu, J-y; Kelley, R.; Manohar, AV, Electroweak corrections using effective field theory: applications to the LHC, Phys. Rev., D 78, 073006, (2008)
[32] Chiu, J-y; Fuhrer, A.; Kelley, R.; Manohar, AV, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev., D 80, 094013, (2009)
[33] Kaplan, DE; Schwartz, MD, Constraining light colored particles with event shapes, Phys. Rev. Lett., 101, 022002, (2008)
[34] Bauer, CW; Schwartz, MD, Improving jet distributions with effective field theory, Phys. Rev. Lett., 97, 142001, (2006)
[35] Bauer, CW; Hornig, A.; Tackmann, FJ, Factorization for generic jet production, Phys. Rev., D 79, 114013, (2009)
[36] Becher, T.; Neubert, M., Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett., 102, 162001, (2009)
[37] Becher, T.; Neubert, M., On the structure of infrared singularities of gauge-theory amplitudes, JHEP, 06, 081, (2009)
[38] Becher, T.; Neubert, M., Infrared singularities of QCD amplitudes with massive partons, Phys. Rev., D 79, 125004, (2009)
[39] Hill, RJ; Neubert, M., Spectator interactions in soft-collinear effective theory, Nucl. Phys., B 657, 229, (2003)
[40] Fleming, S.; Leibovich, AK, The resummed photon spectrum in radiative υ decays, Phys. Rev. Lett., 90, 032001, (2003)
[41] Fleming, S.; Leibovich, AK, The photon spectrum in υ decays, Phys. Rev., D 67, 074035, (2003)
[42] Fleming, S.; Leibovich, AK; Mehen, T., Resumming the color octet contribution to \(e\)\^{}{+}\(e\)\^{}{−} → \(J\)/ψ + \(X\), Phys. Rev., D 68, 094011, (2003)
[43] Arnold, PB; Reno, MH, The complete computation of high \(p\)_{\(T\)} W and Z production in 2nd order QCD, Nucl. Phys., B 319, 37, (1989)
[44] Ferroglia, A.; Neubert, M.; Pecjak, BD; Yang, LL, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett., 103, 201601, (2009)
[45] Ferroglia, A.; Neubert, M.; Pecjak, BD; Yang, LL, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP, 11, 062, (2009)
[46] Catani, S., The singular behaviour of QCD amplitudes at two-loop order, Phys. Lett., B 427, 161, (1998)
[47] Sterman, G.; Tejeda-Yeomans, ME, Multi-loop amplitudes and resummation, Phys. Lett., B 552, 48, (2003)
[48] Aybat, SM; Dixon, LJ; Sterman, G., The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett., 97, 072001, (2006)
[49] Aybat, SM; Dixon, LJ; Sterman, G., The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev., D 74, 074004, (2006)
[50] Gardi, E.; Magnea, L., Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP, 03, 079, (2009)
[51] L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, arXiv:0910.3653 [SPIRES].
[52] Catani, S.; Seymour, MH, The dipole formalism for the calculation of QCD jet cross sections at next-to-leading order, Phys. Lett., B 378, 287, (1996)
[53] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[54] Fazio, F.; Neubert, M., \(B\) → \(X\)_{\(u\)}\(l\)\( \overline v \)_{\(l\)} decay distributions to order α_{\(s\)}, JHEP, 06, 017, (1999)
[55] Becher, T.; Neubert, M., Toward a NNLO calculation of the \( \overline B \) → \(X\)_{\(s\)} + γ decay rate with a cut on photon energy. II: two-loop result for the jet function, Phys. Lett., B 637, 251, (2006)
[56] Bauer, CW; Chiang, C-W; Fleming, S.; Leibovich, AK; Low, I., Resumming the color-octet contribution to radiative υ decay, Phys. Rev., D 64, 114014, (2001)
[57] Bauer, CW; Schwartz, MD, Event generation from effective field theory, Phys. Rev., D 76, 074004, (2007)
[58] Beneke, M.; Braun, VM, Power corrections and renormalons in Drell-Yan production, Nucl. Phys., B 454, 253, (1995)
[59] Catani, S.; Mangano, ML; Nason, P.; Trentadue, L., The resummation of soft gluon in hadronic collisions, Nucl. Phys., B 478, 273, (1996)
[60] D0 collaboration; Abazov, VM; etal., Measurement of the isolated photon cross section in \( p\overline p \) collisions at √s = 1.96 TeV, Phys. Lett., B 639, 151, (2006)
[61] C. Deluca Silberberg, Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector, FERMILAB-THESIS-2009-18, Apr 2009.
[62] CDF collaboration; Aaltonen, T.; etal., Measurement of the inclusive isolated prompt photon cross section in ppbar collisions at √s = 1.96 TeV using the CDF detector, Phys. Rev., D 80, 111106, (2009)
[63] Martin, AD; Stirling, WJ; Thorne, RS; Watt, G., Parton distributions for the LHC, Eur. Phys. J., C 63, 189, (2009)
[64] I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, arXiv:0910.0467 [SPIRES].
[65] Ritbergen, T.; Vermaseren, JAM; Larin, SA, The four-loop β-function in quantum chromodynamics, Phys. Lett., B 400, 379, (1997)
[66] Czakon, M., The four-loop QCD β-function and anomalous dimensions, Nucl. Phys., B 710, 485, (2005)
[67] Moch, S.; Vermaseren, JAM; Vogt, A., The three-loop splitting functions in QCD: the non-singlet case, Nucl. Phys., B 688, 101, (2004)
[68] Vogt, A.; Moch, S.; Vermaseren, JAM, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys., B 691, 129, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.