×

zbMATH — the first resource for mathematics

Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. (English) Zbl 1270.74037
Summary: Interfacial continuity and discontinuity relations are needed in dealing with a variety of mechanical and physical phenomena in heterogeneous media. The present work consists of two parts. In the first part concerned with perfect interfaces, two orthogonal projection operators reflecting the interfacial continuity and discontinuity of the field variables of coupled mechanical and physical phenomena are introduced and some coordinate-free interfacial relations involving the surface decomposition of a generic linear constitutive law are deduced. In the second part dedicated to the derivation of a general imperfect interface model for coupled multifield phenomena by applying Taylor’s expansion to a 3D curved thin interphase perfectly bonded to its two neighboring phases, the interfacial operators and relations given in the first part are used directly so as to render the derivation more direct and to write the final interfacial jump relations characterizing the model in a unified and compact way. The general imperfect interface model obtained in the present work includes as special cases all the relevant ones reported in the literature.

MSC:
74E05 Inhomogeneity in solid mechanics
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Achenbach, J.D.; Zhu, H., Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites, J. mech. phys. solids, 37, 381-393, (1989)
[2] Alshits, V.I.; Darinskii, A.N.; Lothe, J., On the existence of surface waves in half-infinite anisotropic media with piezoelectric and piezomagnetic properties, Wave motion, 16, 265-283, (1992) · Zbl 0764.73022
[3] Benveniste, Y., Effective mechanical behaviour of composite materials with imperfect contact between the constituents, Mech. mater., 4, 197-208, (1985)
[4] Benveniste, Y., The effective conductivity of composites with imperfect thermal contact at constituent interfaces, Int. J. eng. sci., 24, 1537-1552, (1986) · Zbl 0594.73116
[5] Benveniste, Y., Effective thermal-conductivity of composites with a thermal contact resistance between the constituents-nondilute case, J. appl. phys., 61, 2840-2843, (1987)
[6] Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. mech. phys. solids, 54, 708-734, (2006) · Zbl 1120.74323
[7] Benveniste, Y., An 0(hn) interface model of a three-dimensional curved interphase in conduction phenomena, Proc. R. soc., 462, 1593-1617, (2006) · Zbl 1149.80301
[8] Benveniste, Y., An interface model for a three-dimensional curved thin piezoelectric interphase between two piezoelectric media, Math. mech. solids, 14, 102-122, (2009) · Zbl 1257.74040
[9] Benveniste, Y.; Milton, G.W., New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages, J. mech. phys. solids, 51, 1773-1813, (2003) · Zbl 1077.74591
[10] Bövik, P., On the modelling of thin interface layers in elastic and acoustic scattering problems, Quart. J. mech. appl. math., 47, 17-42, (1994) · Zbl 0803.73025
[11] Chen, T.Y., An invariant treatment of interfacial discontinuities in piezoelectric media, Int. J. eng. sci., 31, 1061-1072, (1993) · Zbl 0777.73057
[12] Chen, T.Y.; Dvorak, G.J., Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli, Appl. phys. lett., 88, 211912, (2006)
[13] Chen, T.; Dvorak, G.J.; Yu, C.C., Size-dependent elastic properties of unidirectional nano-composites with interface stresses, Acta mech., 188, 39-54, (2007) · Zbl 1107.74010
[14] Chen, T.Y.; Dvorak, G.J.; Yu, C.C., Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal mechanical connections, Int. J. solids struct., 44, 941-955, (2007) · Zbl 1120.74045
[15] Dingreville, R.; Qu, J.; Cherkaoui, M., Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. mech. phys. solids, 8, 1827-1854, (2005) · Zbl 1120.74683
[16] Do Carmo, M.P., Differential geometry of curves and surfaces, (1976), Prentice Hall · Zbl 0326.53001
[17] Duan, H.L.; Wang, J.; Huang, Z.P.; Karihaloo, B.L., Eshelby formalism for nano-inhomogeneities, Proc. R. soc. A, 461, 3335-3353, (2005) · Zbl 1370.74068
[18] Duan, H.L.; Wang, J.; Huang, Z.P.; Karihaloo, B.L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. mech. phys. solids, 53, 1574-1596, (2005) · Zbl 1120.74718
[19] Duan, H.L.; Wang, J.; Huang, Z.P.; Luo, Z.Y., Stress concentration tensors of inhomogeneities with interface effects, Mech. mater., 37, 723-736, (2005)
[20] Duan, H.L.; Wang, J.; Karihaloo, B.L., Theory of elasticity at the nanoscale, Adv. appl. mech., 42, 1-68, (2009)
[21] Gu, S.T., 2008. Contributions to the modelling of imperfect interfaces and to the homogenization of heterogeneous materials. Ph.D. Thesis (in French), Université Paris-Est Marne-la-Vallée, France.
[22] Gu, S.T.; He, Q.C.; Pensée, V.; Zhou, J.Z., Asymptotic derivation of a curved piezoelectric interface model and homogenization of piezoelectric composites, Adv. mater. res., 47-50, 575-578, (2008)
[23] Gurtin, M.E.; Murdoch, A.I., A continuum theory of elastic material surfaces, Arch. rat. mech. anal., 57, 291-323, (1975) · Zbl 0326.73001
[24] Gurtin, M.E.; Weissmüller, J.; Larché, F., A general theory of curved deformable interfaces in solids at equilibrium, Philos. mag., 75, 1093-1109, (1998)
[25] Hadamard, J., 1903. Leçons sur la propagation des ondes et les equations de l’hydrodynamique. Hermann, Paris. · JFM 34.0793.06
[26] Hashin, Z., Thermoelastic properties and conductivity of carbon/carbon fiber composites, Mech. mater., 8, 293-308, (1990)
[27] Hashin, Z., The spherical inclusion with imperfect interface, J. appl. mech., 58, 444-449, (1991)
[28] Hashin, Z., Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli, J. mech. phys. solids, 40, 767-781, (1992) · Zbl 0760.73077
[29] Hashin, Z., Thin interphase/imperfect interface in conduction, J. appl. phys., 51, 2261-2267, (2001)
[30] Hashin, Z., Thin interphase/imperfect interface in elasticity with application to coated fiber, J. mech. phys. solids, 50, 2509-2537, (2002) · Zbl 1080.74006
[31] He, Q.C., 2006. Mechanics of Interfaces, Graduate Course (in French). Université Paris-Est Marne-la-Vallée, France.
[32] He, Q.C.; Curnier, A., A more fundamental approach to damaged elastic stress – strain relations, Int. J. solids struct., 32, 1433-1457, (1995) · Zbl 0881.73105
[33] Hill, R., Discontinuity relations in mechanics of solids, (), 247-276
[34] Hill, R., 1972. An invariant treatment of interfacial discontinuities in elastic composites. In: Continuum Mechanics and Related Problems of Analysis (N.I. Mukhelishvili 80th Anniversary Volume), Academy of Sciences, Moscow, pp. 597-604.
[35] Hill, R., Interfacial operators in the mechanics of composite media, J. mech. phys. solids, 31, 347-357, (1983) · Zbl 0534.73012
[36] Laws, N., On interfacial discontinuities in elastic composites, J. elasticity, 5, 227-235, (1975) · Zbl 0323.73015
[37] Laws, N., The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material, J. elasticity, 7, 91-97, (1977) · Zbl 0384.73011
[38] Le Quang, H.; Bonnet, G.; He, Q.C., Size-dependent eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces, Phys. rev. B, 81, 064203, (2010)
[39] Le Quang, H.; He, Q.C., Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases, J. mech. phys. solids, 55, 1889-1921, (2007) · Zbl 1173.74035
[40] Le Quang, H.; He, Q.C., Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces, Mech. mater., 40, 865-884, (2008)
[41] Le Quang, H.; He, Q.C., Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases, Arch. appl. mech., 79, 225-248, (2009) · Zbl 1168.74426
[42] Lipton, R., Composites with imperfect interface, Proc. R. soc. London A, 452, 329-358, (1996) · Zbl 0872.73033
[43] Lipton, R., Variational methods, bounds and size effects for composites with highly conducting interface, J. mech. phys. solids, 45, 361-384, (1997) · Zbl 0969.74571
[44] Lipton, R., Reciprocal relations, bounds, and size effects for composites with highly conducting interface, SIAM J. appl. math., 57, 342-363, (1997) · Zbl 0877.35012
[45] Milton, G.W., The theory of composites, (2001), Cambridge University Press · Zbl 0631.73011
[46] Mitrushchenkov, A.; Chambaud, G.; Yvonnet, J.; He, Q.C., Towards an elastic model of wurtzite aln nanowires, Nanotechnology, 21, 255702, (2010)
[47] Mogilevskaya, S.G.; Crouch, S.L.; Stolarski, H.K., Multiple interacting circular nano-inhomogeneities with surface/interface effects, J. mech. phys. solids, 56, 2298-2327, (2008) · Zbl 1171.74398
[48] Mogilevskaya, S.G.; Crouch, S.L.; Stolarski, H.K.; Benusiglio, A., Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects, Int. J. solids struct., 47, 407-418, (2010) · Zbl 1183.74227
[49] Pham-Huy, H.; Sanchez-Palencia, E., Phénomènes de transmission à travers des couches minces de conductivité élevée, J. math. anal. appl., 47, 284-309, (1974) · Zbl 0286.35007
[50] Qu, J., The effect of slightly weakened interfaces on the overall elastic properties of composite materials, Mech. mater., 14, 269-281, (1993)
[51] Rubin, M.B.; Benveniste, Y., A Cosserat shell model for interphases in elastic media, J. mech. phys. solids, 52, 1023-1052, (2004) · Zbl 1112.74422
[52] Sanchez-Palencia, E., Comportement limite d’un problème de transmission à travers une plaque faiblement conductrice, C. R. acad. sci. Paris A, 270, 1026-1028, (1970) · Zbl 0189.41503
[53] Sharma, P.; Ganti, S., Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, J. appl. mech., 71, 663-671, (2004) · Zbl 1111.74629
[54] Sharma, P.; Ganti, S.; Bhate, N., Effect of surfaces on the size-dependent elastic state of nanoinhomogeneities, Appl. phys. lett., 82, 535-537, (2003)
[55] Shenoy, V.B., Size-dependent rigidities of nanosized torsional elements, Int. J. solids struct., 39, 4039-4052, (2002) · Zbl 1040.74007
[56] Thorpe, J.A., Elementary topics in differential geometry, (1979), Springer-Verlag · Zbl 0404.53001
[57] Torquato, S.; Rintoul, M.D., Effect of the interface on the properties of composite media, Phys. rev. lett., 75, 4067-4070, (1995)
[58] Walpole, L.J., A coated inclusion in an elastic medium, Math. proc. Cambridge philos. soc., 83, 495-506, (1978) · Zbl 0378.73019
[59] Walpole, L.J., Elastic behavior of composite materials: theoretical foundations, Adv. appl. mech., 21, 169-242, (1981) · Zbl 0512.73056
[60] Yvonnet, J.; Le Quang, H.; He, Q.C., An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Comput. mech., 42, 119-131, (2008) · Zbl 1188.74076
[61] Yvonnet, J.; He, Q.C.; Toulemonde, C., Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface, Compos. sci. tech., 68, 2818-2825, (2008)
[62] Yvonnet, J.; He, Q.C.; Zhu, Q.Z.; Shao, J.F., A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM, Comput. mater. sci., 50, 1220-1224, (2011)
[63] Yvonnet, J.; Mitrushchenkov, A.; Chambaud, G.; He, Q.C., Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations, Comput. methods appl. mech. eng., 200, 614-625, (2011) · Zbl 1225.74112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.