zbMATH — the first resource for mathematics

A modified log-Harnack inequality and asymptotically strong Feller property. (English) Zbl 1270.60085
To characterize the asymptotic strong Feller property, a weaker version of the log-Harnack inequality is introduced. In particular, using an asymptotic coupling argument, a weak log-Harnack inequality for the 2D stochastic Navier-Stokes equation driven by highly degenerate but essentially elliptic noise is established, and thus the known asymptotic strong Feller property is re-confirmed.

60J60 Diffusion processes
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
Full Text: DOI arXiv
[1] Shigeki Aida and Hiroshi Kawabi, Short time asymptotics of a certain infinite dimensional diffusion process, Stochastic analysis and related topics, VII (Kusadasi, 1998), Progr. Probab., vol. 48, Birkhäuser Boston, Boston, MA, 2001, pp. 77–124. MR MR1915450 (2003m:60219).
[2] Aida Shigeki, Zhang Tusheng: On the small time asymptotics of diffusion processes on path groups. Potential Anal. 16(1), 67–78 (2002) MR MR1880348 (2003e:58052) · Zbl 0993.60026 · doi:10.1023/A:1024868720071
[3] Arnaudon M., Thalmaier A., Wang F.-Y.: Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. 130, 223–233 (2006) · Zbl 1089.58024 · doi:10.1016/j.bulsci.2005.10.001
[4] Arnaudon M., Thalmaier A., Wang F.-Y.: Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds. Stoch. Proc. Appl. 119, 3653–3670 (2009) · Zbl 1178.58013 · doi:10.1016/j.spa.2009.07.001
[5] Bobkov S.G., Gentil I., Ledoux M.: Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. 80, 669–696 (2001) · Zbl 1038.35020
[6] Bobkov Sergey G., Gentil Ivan, Ledoux Michel: Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. (9) 80(7), 669–696 (2001) MR MR1846020 (2003b:47073) · Zbl 1038.35020
[7] Da Prato G., Röckner M., Wang F.-Y.: Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J. Funct. Anal. 257, 992–1017 (2009) · Zbl 1193.47047 · doi:10.1016/j.jfa.2009.01.007
[8] Weinan E, J. C. Mattingly, and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys. 224 (2001), no. 1, 83–106, Dedicated to Joel L. Lebowitz. MR 1868992 (2002m:76024). · Zbl 0994.60065
[9] Es-Sarhir A., Renesse M.-K.V., Scheutzow M.: Harnack inequality for functional SDEs with bounded memory. Electron. Commun. Probab. 14, 560–565 (2009) · Zbl 1195.34124
[10] Flandoli Franco, Maslowski Bohdan: Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 172(1), 119–141 (1995) MR 1346374 (96g:35223) · Zbl 0845.35080 · doi:10.1007/BF02104513
[11] Gong Fu-Zhou, Wang Feng-Yu: Heat kernel estimates with application to compactness of manifolds. Q. J. Math. 52(2), 171–180 (2001) MR MR1838361 (2002c:58039) · Zbl 1132.58302 · doi:10.1093/qjmath/52.2.171
[12] Arnaud Guillin and Feng-Yu Wang Degenerate Fokker-Planck Equations : Bismut Formula, Gradient Estimate and Harnack Inequality, (2011), arXiv:1103.2817v2. · Zbl 1306.60121
[13] Hairer M.: Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Related Fields 124(3), 345–380 (2002) MR 1939651 (2004j:60135) · Zbl 1032.60056 · doi:10.1007/s004400200216
[14] Martin Hairer, An introduction to stochastic PDEs, 2009, http://www.hairer.org/notes/SPDEs.pdf .
[15] Hairer Martin, Mattingly Jonathan C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164(3), 993–1032 (2006) MR MR2259251 (2008a:37095) · Zbl 1130.37038 · doi:10.4007/annals.2006.164.993
[16] Martin Hairer and Jonathan C. Mattingly, A theory of hypoellipticity and unique ergodicity for semilinear stochastic pdes, 2008, arXiv:0808.1361v1. · Zbl 1228.60072
[17] Martin Hairer and Jonathan C. Mattingly and Michael Scheutzow, Asymptotic coupling and a weak form of Harris’ theorem with applications to stochastic delay equations, (2009), arXiv:0902.4495v2.
[18] Kawabi Hiroshi: The parabolic Harnack inequality for the time dependent Ginzburg-Landau type SPDE and its application. Potential Anal. 22(1), 61–84 (2005) MR MR2127731 (2006j:60066) · Zbl 1118.60053
[19] S. Kuksin, A. Shirikyan, Mathematics of 2D Statistical Hydrodynamics, manuscript of a book (available on http://www.u-cergy.fr/shirikyan/book.html ). · Zbl 1333.76003
[20] Liu Wei, Wang Feng-Yu: Harnack inequality and strong Feller property for stochastic fast-diffusion equations. J. Math. Anal. Appl. 342(1), 651–662 (2008) MR MR2440828 (2009k:60137) · Zbl 1151.60032 · doi:10.1016/j.jmaa.2007.12.047
[21] Mattingly Jonathan C.: Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys. 230(3), 421–462 (2002) MR 1937652 (2004a:76039) · Zbl 1054.76020 · doi:10.1007/s00220-002-0688-1
[22] Röckner Michael, Wang Feng-Yu: Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequences. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13(1), 27–37 (2010) MR 2646789 · Zbl 1207.60053 · doi:10.1142/S0219025710003936
[23] Röckner Michael, Wang Feng-Yu: Harnack and functional inequalities for generalized Mehler semigroups. J. Funct. Anal. 203(1), 237–261 (2003) MR MR1996872 (2005d:47077) · Zbl 1059.47051 · doi:10.1016/S0022-1236(03)00165-4
[24] Röckner Michael, Wang Feng-Yu: Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds. Forum Math. 15(6), 893–921 (2003) MR MR2010284 (2005b:58059) · Zbl 1062.47044
[25] Roger Temam, Navier-Stokes equations and nonlinear functional analysis, second ed., CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. MR 1318914 (96e:35136). · Zbl 0833.35110
[26] Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR MR1964483 (2004e:90003). · Zbl 1106.90001
[27] Wang Feng-Yu: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Related Fields 109(3), 417–424 (1997) MR MR1481127 (98i:58253) · Zbl 0887.35012 · doi:10.1007/s004400050137
[28] Wang Feng-Yu: Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constants. Ann. Probab. 27(2), 653–663 (1999) MR MR1698947 (2000i:58067) · Zbl 0948.58023 · doi:10.1214/aop/1022677381
[29] Wang Feng-Yu: Logarithmic Sobolev inequalities: conditions and counterexamples. J. Operator Theory 46(1), 183–197 (2001) MR MR1862186 (2003g:58060) · Zbl 0993.58019
[30] Wang Feng-Yu: Harnack inequality and applications for stochastic generalized porous media equations. Ann. Probab. 35(4), 1333–1350 (2007) MR MR2330974 (2008e:60192) · Zbl 1129.60060 · doi:10.1214/009117906000001204
[31] Wang F.-Y.: Harnack inequalities on manifolds with boundary and applications. J. Math. Pures Appl. 94, 304–321 (2010) · Zbl 1207.58028
[32] F.-Y. Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on non-convex manifolds, to appear in Annals of Probab. arXiv:0911.1644.
[33] Feng-Yu Wang, Jiang-Lun Wu, and Lihu Xu, Harnack and log-harnack inequalities of stochastic burgers type equations, arXiv:1009.5948v1. · Zbl 1227.60079
[34] F.-Y. Wang, L. Xu, Derivative formula and its application to stochastic hyperdissipative Navier-Stokes/Burgers equations, arXiv:1009.1464.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.