zbMATH — the first resource for mathematics

Polynomial processes and their applications to mathematical finance. (English) Zbl 1270.60079
The authors introduce a class of Markov processes, called polynomial processes (or \(m\)-polynomial processes), which have the property that the expected value of any polynomial of the random variable \(X_t\), \(t\geq 0\), is again a polynomial in the initial value of the process, meaning that moments of all orders of \(X_T\) can be computed in an easy and efficient way (even without probability distribution or characteristic function).
It is shown that this class of processes contains exponential Lévy processes, affine processes and processes of Pearson diffusion type. These processes can be applied, e.g., to GMM estimation procedures and to new techniques for option pricing and hedging. In particular, it can be also applied to variance reduction techniques in Monte Carlo methods due to the efficient and easy computation of moments.

60J25 Continuous-time Markov processes on general state spaces
91B70 Stochastic models in economics
Full Text: DOI arXiv
[1] Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing Co., New York (1965). Translated by N. Kemmer · Zbl 0135.33803
[2] Bates, D.S.: Post-’87 crash fears in the S&P 500 futures option market. J. Econom. 94, 181–238 (2000) · Zbl 0942.62118 · doi:10.1016/S0304-4076(99)00021-4
[3] Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1998)
[4] Chen, L., Filipović, D., Poor, H.V.: Quadratic term structure models for risk-free and defaultable rates. Math. Finance 14, 515–536 (2004) · Zbl 1098.91048 · doi:10.1111/j.0960-1627.2004.00203.x
[5] Cheridito, P., Filipović, D., Yor, M.: Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15, 1713–1732 (2005) · Zbl 1082.60034 · doi:10.1214/105051605000000197
[6] Çinlar, E., Jacod, J., Protter, P., Sharpe, M.J.: Semimartingales and Markov processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 54, 161–219 (1980) · Zbl 0443.60074 · doi:10.1007/BF00531446
[7] Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003) · Zbl 1048.60059 · doi:10.1214/aoap/1060202833
[8] Dunkl, C.F.: Hankel transforms associated to finite reflection groups. In: Beals, R.W. (ed.) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Tampa, FL, 1991. Contemp. Math., vol. 138, pp. 123–138. Amer. Math. Soc., Providence (1992) · Zbl 0789.33008
[9] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli, R. Schnaubelt · Zbl 0952.47036
[10] Forman, J.L., Sørensen, M.: The Pearson diffusions: A class of statistically tractable diffusion processes. Scand. J. Stat. 35, 438–465 (2008) · Zbl 1198.62078 · doi:10.1111/j.1467-9469.2007.00592.x
[11] Gallardo, L., Yor, M.: Some remarkable properties of the Dunkl martingales. In: Emery, M., Yor, M. (eds.) In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX. Lecture Notes in Math., vol. 1874, pp. 337–356. Springer, Berlin (2006) · Zbl 1128.60027
[12] Gatheral, J.: The Volatility Surface: A Practitioner’s Guide. Wiley Finance (2006)
[13] Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
[14] Gourieroux, C., Jasiak, J.: Multivariate Jacobi process with application to smooth transitions. J. Econom. 131, 475–505 (2006) · Zbl 1337.62365 · doi:10.1016/j.jeconom.2005.01.014
[15] Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (1987) · Zbl 0635.60021
[16] Jacod, J., Kurtz, T.G., Méléard, S., Protter, P.: The approximate Euler method for Lévy driven stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 41, 523–558 (2005) · Zbl 1071.60046 · doi:10.1016/j.anihpb.2004.01.007
[17] Keller-Ressel, M., Schachermayer, W., Teichmann, J.: Affine processes are regular. Probab. Theory Relat. Fields 151, 591–611 (2011) · Zbl 1235.60093 · doi:10.1007/s00440-010-0309-4
[18] Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Real and Stochastic Analysis. Trends Math., pp. 305–373. Birkhäuser, Boston (2004) · Zbl 1082.60052
[19] Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (1978) · Zbl 0395.65012 · doi:10.1137/1020098
[20] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975) · Zbl 0308.47002
[21] Reimer, M.: Multivariate Polynomial Approximation. International Series of Numerical Mathematics, vol. 144. Birkhäuser, Basel (2003) · Zbl 1038.41002
[22] Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales. Vol. 1 Foundations. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). Reprint of the second (1994) edition · Zbl 0826.60002
[23] Zhou, H.: Itô conditional moment generator and the estimation of short rate processes. J. Financ. Econom. 1, 250–271 (2003) · doi:10.1093/jjfinec/nbg009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.