Extensions of ordering sets of states from effect algebras onto their MacNeille completions. (English) Zbl 1270.06005

Summary: In [Z. Riečanová and M. Zajac, Rep. Math. Phys. 70, No. 3, 283–290 (2012; Zbl 1268.81014)] it was shown that an effect algebra \(E\) with an ordering set \(\mathcal{M}\) of states can by embedded into a Hilbert space effect algebra \(\mathcal{E}(l_{2}(\mathcal{M}))\). We consider the problem when its effect-algebraic MacNeille completion \(\hat{E}\) can be also embedded into the same Hilbert space effect algebra \(\mathcal {E}(l_{2}(\mathcal{M}))\). That is, when the ordering set \(\mathcal{M}\) of states on \(E\) can be extended to an ordering set of states on \(\hat{E}\). We give an answer for all Archimedean MV-effect algebras and Archimedean atomic lattice effect algebras.


06D35 MV-algebras
06A15 Galois correspondences, closure operators (in relation to ordered sets)
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)


Zbl 1268.81014
Full Text: DOI


[1] Blank, J., Exner, P., Havlíček, M.: Hilbert Space Operators in Quantum Physics, 2nd edn. Springer, Berlin (2008) · Zbl 1163.47060
[2] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad./Ister Science, Dordrecht/Bratislava (2000) · Zbl 0987.81005
[3] Foulis, D.J.; Bennett, M.K., Effect algebras and unsharp quantum logics, Found. Phys., 24, 1331-1352, (1994) · Zbl 1213.06004
[4] Kôpka, F.; Chovanec, F., D-posets, Math. Slovaca, 44, 21, (1994) · Zbl 0789.03048
[5] Kôpka, F., D-posets of fuzzy sets, Tatra Mt. Math. Publ., 1, 83-87, (1992) · Zbl 0797.04011
[6] Janda, J., Riečanová, Z.: Intervals in generalized effect algebra. Preprint · Zbl 1325.03077
[7] Paseka, J., Riečanová, Z.: Inherited properties of effect algebras preserved by isomorphism. Acta Polytech. (2013) to appear · Zbl 0967.06008
[8] Riečanová, Z., Macneille completions of d-posets and effect algebras, Int. J. Theor. Phys., 39, 859-869, (2000) · Zbl 0967.06008
[9] Riečanová, Z., Archimedean and block-finite lattice effect algebra, Demonstr. Math., 33, 443-452, (2000) · Zbl 0967.06006
[10] Riečanová, Z., Generalization of blocks for d-lattices and lattice-ordered effect algebras, Int. J. Theor. Phys., 39, 231-237, (2000) · Zbl 0968.81003
[11] Riečanová, Z., Distributive atomic effect algebras, Demonstr. Math., 36, 247-259, (2003) · Zbl 1039.03050
[12] Riečanová, Z., Sub-effect algebras and Boolean sub-effect algebras, Soft Comput., 5, 400-403, (2001) · Zbl 0992.03082
[13] Riečanová, Z.; Marinová, I., Generalized homogenoeus, prelattice and MV-effect algebras, Kybernetika, 41, 129-142, (2005) · Zbl 1249.03122
[14] Paseka, J.; Riečanová, Z., The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states, Soft Comput., 15, 543-555, (2011) · Zbl 1247.03135
[15] Riečanová, Z.; Zajac, M., Hilbert space effect-representations of effect algebras, Rep. Math. Phys., 70, 283-290, (2012) · Zbl 1268.81014
[16] Riečanová, Z., Zajac, M.: Intervals in generalized effect algebras and their sub-generalized effect algebras. Acta Polytech. (2013) to appear
[17] Schmidt, J.: Zur Kennzeichnung der Dedekind-MacNeilleschen Hulle einer Geordneten Menge. Arch. Math. 7, 241-249 (1956) · Zbl 0073.03801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.