zbMATH — the first resource for mathematics

Exact solution for the rotational flow of a generalized second-grade fluid in a circular cylinder. (English) Zbl 1269.76014
Summary: This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a second grade fluid is introduced. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms to satisfy all imposed initial and boundary conditions. The solutions corresponding to second grade fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations.

76A05 Non-Newtonian fluids
76U05 General theory of rotating fluids
Full Text: DOI
[1] Bandelli R., Rajagopal K.R.: Start-up flows of second grade fluids in domains with one finite dimension. Int. J. Non-Linear Mech. 30, 817–839 (1995) · Zbl 0866.76004 · doi:10.1016/0020-7462(95)00035-6
[2] Liu C., Huang J.: Analytical solution for the unsteady rotatory flow of viscoelastic fluids in annular pipes. Acta Math. Appl. Sin. 19(1), 10–14 (1996) · Zbl 0858.76009
[3] Han S.: Constitutive Equations and Calculating Analytical Theory of Non-Newtonian Fluids. Science Press, Beijing (2000)
[4] Caputo M., Mainardi F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971) · Zbl 1213.74005 · doi:10.1007/BF00879562
[5] Slonimsky G.L.: On the law of deformation of highly elastic polymeric bodies. Dokl. Akad. Nauk BSSR 140, 343–346 (1961)
[6] Stiassnie M.: On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Model. 3, 300–302 (1979) · Zbl 0419.73038 · doi:10.1016/S0307-904X(79)80063-3
[7] Mainardi F.: Applications of fractional calculus in mechanics. In: Rusev, P., Dimovschi, I., Kiryakova, V. (eds) Transform Methods and Special Functions, Varna’96, pp. 309–334. Bulgarian Academy of Sciences, Sofia (1998) · Zbl 1113.26303
[8] Bagley R.L., Torvik P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[9] Bagley R.L., Torvik P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986) · Zbl 0613.73034 · doi:10.1122/1.549887
[10] Rogers L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27, 351–372 (1983) · Zbl 0557.73038 · doi:10.1122/1.549710
[11] Koeller R.C.: Applications of fractional calculus to the theory of viscoelasticity. Trans. ASME J. Appl. Mech. 51(2), 299–307 (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[12] Xu M., Tan W.: Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci. China Ser. A 44(11), 1387–1399 (2001) · Zbl 1138.76320 · doi:10.1007/BF02877067
[13] Xu M., Tan W.: Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Sci. China (Series G) 46(2), 145–157 (2003) · Zbl 1217.62058 · doi:10.1360/03ys9016
[14] Huang J., He G., Liu C.: Analysis of general second order fluid flow in double cylinder rheometer. Sci. China (Series A) 40(2), 183–190 (1997) · Zbl 0891.76006 · doi:10.1007/BF02874437
[15] Rossihin Y.A., Shitikova M.V.: A new method for solving dynamic problems of fractional derivative visoelasticity. Int. J. Eng. Sci. 39, 149–176 (2001) · doi:10.1016/S0020-7225(00)00025-2
[16] Debnath L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003) · Zbl 1036.26004 · doi:10.1155/S0161171203301486
[17] Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[18] Rouse P.E.: The theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953) · doi:10.1063/1.1699180
[19] Ferry J.D., Landel R.F., Williams M. L.: Extensions of the Rouse theory of viscoelastic properties to undiluted linear polymers. J. Appl. Phys. 26, 359–362 (1955) · doi:10.1063/1.1721997
[20] Tan W., Xu M.: The impulsive motion of flat plate in a generalized second grade fluid. Mech. Res. Common. 29, 3–9 (2002) · Zbl 1151.76368 · doi:10.1016/S0093-6413(02)00223-9
[21] Tan W., Xu M.: Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mech. Sin. 20(5), 471–476 (2004) · doi:10.1007/BF02484269
[22] Shen F., Tan W., Zhao Y., Masuoka T.: The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7, 1072–1080 (2006) · Zbl 1113.76016 · doi:10.1016/j.nonrwa.2005.09.007
[23] Khan M., Nadeem S., Hayat T., Siddiqui A.M.: Unsteady motions of a generalized second grade fluid. Math. Comput. Model 41, 629–637 (2005) · Zbl 1080.76007 · doi:10.1016/j.mcm.2005.01.029
[24] Tong D., Yosong L.: Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Int. J. Eng. Sci. 43, 281–289 (2005) · Zbl 1211.76014 · doi:10.1016/j.ijengsci.2004.09.007
[25] Tong D., Wang R., Yang H.: Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci. China Ser. G Phys. Mech. Astron. 48(4), 485–495 (2005) · doi:10.1360/04yw0105
[26] Qi H., Xu M.: Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta Mech. Sin. 23, 463–469 (2007) · Zbl 1202.76017 · doi:10.1007/s10409-007-0093-2
[27] Vieru D., Fetecau C., Fetecau C.: Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate. Appl. Math. Comp. 201, 834–842 (2008) · Zbl 1143.76011 · doi:10.1016/j.amc.2007.12.045
[28] Lorenzo, C.F., Hartley, T.T.: Generalized functions for the fractional calculus. NASA/TP-1999-209424/Rev1, (1999)
[29] Debnath L., Bhatta D.: Integral Transforms and Their Applications, 2nd edn. Chapman and Hall/CRC Press, Boca Raton/London (2007) · Zbl 1113.44001
[30] McLachlan N.W.: Bessel Functions for Engineers. Oxford Univeristy Press, London (1955) · JFM 61.1177.05
[31] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. NBS, Appl. Math. Series vol. 55. Washington, DC (1964) · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.