Dedekind-MacNeille completion and Cartesian product of multi-adjoint lattices. (English) Zbl 1269.06003

Summary: Fuzzy logic programming tries to introduce fuzzy logic into logic programming in order to provide new-generation computer languages which incorporate comfortable programming resources for helping the development of applications where uncertainty could play an important role. In this sense, the mathematical concept of multi-adjoint lattice has been successfully exploited into the so-called multi-adjoint logic programming approach, MALP in brief, for modelling flexible notions of truth-degrees beyond the simpler case of true and false. In this paper, we focus on two relevant mathematical concepts for this kind of domains useful for evaluating MALP. On the one side, we adapt the classical notion of Dedekind-MacNeille completion in order to relax some usual hypothesis on such kind of ordered sets, and next we study the advantages of generating multi-adjoint lattices as the Cartesian product of previous ones. On the practical side, we show that the formal mechanisms described before have direct correspondences with interesting debugging tasks in the Fuzzy Logic Programming Environment for Research, FLOPER in brief, developed in our research group.


06B23 Complete lattices, completions
68N17 Logic programming


Full Text: DOI


[1] DOI: 10.2307/2275217 · Zbl 0795.03013
[2] Almendros-Jiménez, J., Luna, A. and Moreno, G.A Flexible XPath-based Query Language Implemented With Fuzzy Logic Programming. Proceedings of 5th International Symposium on Rules: Research Based, Industry Focused, RuleML’11, Lecture Notes on Computer Science 6826. July19–21, Barcelona, Spain. pp.186–193. Berlin Heidelberg: Springer Verlag.
[3] Caballero, R., Rodríguez-Artalejo, M. and Romero-Díaz, C. A.Similarity-based Reasoning in Qualified Logic Programming. Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP ’08. Valencia, Spain. pp.185–194. New York, USA: ACM.
[4] DOI: 10.1016/j.ins.2010.07.002 · Zbl 1222.06004
[5] Cabrera, I., Cordero, P., Gutiérrez, G., Martínez, J. and Ojeda-Aciego, M.Coalgebras and Non-determinism: An Application to Multilattices. Proceedings of Physics and Computation. Luxor, Egypt. · Zbl 1222.06004
[6] DOI: 10.1007/978-3-642-21498-1_55 · Zbl 05959114
[7] DOI: 10.1007/978-3-642-23713-3_15 · Zbl 1347.68329
[8] DOI: 10.1017/CBO9780511809088
[9] Dedekind R., Stetigkeit und irrationale Zahlen (1872)
[10] DOI: 10.1006/jabr.2000.8622 · Zbl 0988.06003
[11] DOI: 10.1090/S0002-9947-05-03816-X · Zbl 1083.06009
[12] DOI: 10.1023/A:1004982417404 · Zbl 0886.06002
[13] DOI: 10.2307/2372123 · Zbl 0045.31505
[14] Julián, P., Moreno, G. and Penabad, J.On the Declarative Semantics of Multi-adjoint Logic Programs. Proceedings of the 10th International Work-Conference on Artificial Neural Networks, IWANN’09, Salamanca, Lecture Notes on Computer Science 5517. pp.253–260. Berlin: Springer.
[15] DOI: 10.1007/978-3-642-83189-8
[16] MacCaull W., Bull. Sect. Logic (University of Lódź) 25 pp 41– (1996)
[17] DOI: 10.1090/S0002-9947-1937-1501929-X · JFM 63.0833.04
[18] Medina, J. and Ojeda-Aciego, M.Towards Attribute Reduction in Multi-adjoint Concept Lattices. Proceedings of Concept Lattices and Applications, CLA’10. pp.92–103. Sevilla, Spain · Zbl 1293.06001
[19] DOI: 10.1016/j.fss.2006.11.006 · Zbl 1111.68016
[20] Medina J., LNAI 4827 pp 271– (2007)
[21] DOI: 10.1016/j.fss.2008.05.004 · Zbl 1187.68589
[22] Medina, J., Ojeda-Aciego, M. and Vojtáš, P.Multi-adjoint Logic Programming With Continuous Semantics. Proceedings of Logic Programming and Non-monotonic Reasoning, LPNMR’01. Viena, Austria. pp.351–364. Berlin Heidelberg: Springer. LNAI 2173 · Zbl 1007.68023
[23] Medina, J., Ojeda-Aciego, M. and Vojtáš, P.A Procedural Semantics for Multi-adjoint Logic Programing. Porto, Portugal. pp.290–297. Berlin Heidelberg: Springer-Verlag. LNAI 2258 · Zbl 1053.68540
[24] DOI: 10.1016/j.fss.2003.11.005 · Zbl 1073.68026
[25] Morcillo, P., Moreno, G., Penabad, J. and Vázquez, C.A Practical Management of Fuzzy Truth Degrees Using FLOPER. Proceedings of 4th International Symposium on Rule Interchange and Applications, RuleML’10. October21–23, Washington, DC. pp.119–126. Berlin Heidelberg: Springer Verlag. Lecture Notes on Computer Science 6403
[26] Morcillo, P., Moreno, G., Penabad, J. and Vázquez, C.Fuzzy Computed Answers Collecting Proof Information. Advances in Computational Intelligence. Proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN’11. Torremolinos, Spain. pp.445–452. Berlin Heidelberg: Springer Verlag. Lecture Notes on Computer Science 6692
[27] Nguyen H. T., A First Course in Fuzzy Logic, 3. ed. (2006)
[28] DOI: 10.1017/S1471068410000323 · Zbl 1209.68097
[29] Rodríguez-Artalejo, M. and Romero-Díaz, C. A.Quantitative Logic Programming Revisited. Functional and Logic Programming (FLOPS’08). Ise, Japan. pp.272–288. Berlin Heidelberg: Springer. Lecture Notes on Computer Science 4989 · Zbl 1137.68341
[30] DOI: 10.1016/j.entcs.2009.07.060 · Zbl 1337.68055
[31] DOI: 10.1007/s11083-007-9055-3 · Zbl 1125.06002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.